PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transient model of heat pump cycle

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduce a transient model of the propane heat pump cycle. The heat pump cycle model includes: a compressor model, a condenser model in lumped parameters, an evaporator model in lumped parameters, an expansion valve model, a heat source model (cooling chamber), a PID control system for heat recovery from superheated refrigerant vapour. The model allows estimate inertia of the heat pump cycle with the system of the heat recovery from superheated propane vapor. The presented theoretical model can determine unsteady and steady state conditions of the different subsystems in the heat pump cycle (condenser, evaporator, compressor). The article presents the results of calculations and determines the time of reaching steady states of the key systems of the heat pump system. The article also presents (in a graphical form) the behavior of the system where the setting was changed after reaching the steady state after 2000s from 50kW to 40kW at the thermal load of the additional heat recovery exchanger.
Rocznik
Strony
139--146
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Science, Turbine Department, Centre of Heat and Power Engineering
Bibliografia
  • 1. Underwood C.P., 2001, “Analysis multivariable control of refrigeration plant using MATLAB/SIMULINK”, Seventh international IBPSA Conference Rio de Janeiro, Brazil.
  • 2. Fu L., Ding G., Zhang C. 2003, “Dynamic simulation of air-to-water dual-mode heat pump with screw compressor”, Applied Thermal Engineering 23 pp.1629-1645
  • 3. Koury R.N.N., Machado L., Ismail K.A.R., 2001, “Numerical simulation of a variable speed refrigeration system”; International Journal of Refrigeration 24.
  • 4. Xue, Zhifang; Shi, Lin, 2010 "Modeling and Experimental Investigation of a Variable Speed Drive Water Source Heat Pump" Tsinghua Science & Technology pp. 434-440.
  • 5. Carlos A. Piedrahita-Velasquez, Hector J. Ciro-Velasquez, Mario A. Gomez-Botero Identification and digital control of a household refrigeration system with a variable speed compressor, International Journal of Refrigeration 48 (2014).
  • 6. Wei-Jiang Zhang, Chun-Lu Zhang, Guo-Liang Ding, On three forms of momentum equation in transient modeling of residential refrigeration systems International Journal of Refrigeration 32 (2009) 938 –944.
  • 7. Cezar O.R. Negrão, Raul H. Erthal, Diogo E.V. Andrade, Luciana Wasnievski da Silva, A semi-empirical model for the unsteady-state simulation of reciprocating compressors for household refrigeration applications Applied Thermal Engineering 31 (2011) 1114-1124.
  • 8. Ye Yao, Weiwei Wang, Mengwei Huang, A state-space dynamic model for vapor compression refrigeration system based on moving-boundary formulation, International Journal of Refrigeration 60 (2015) 174–189.
  • 9. Lixing Zheng, Jianqiang Deng, Yang He, Peixue Jiang, Dynamic model of a transcritical CO2 ejector expansion refrigeration system, International Journal of Refrigeration 60 (2015) 247–260.
  • 10. Jean Castaing-Lasvignottes, Stephane Gibout, Dynamic simulation of reciprocating refrigeration compressors and experimental validation International Journal of Refrigeration 33 (2010) 381 –389.
  • 11. R. Ben-Abdallah , D. Leducq , H.M. Hoang , O. Pateau , B. Ballot-Miguet , A. Delahaye , L. Fournaison , Modelling and experimental investigation for load temperature prediction at transient conditions of open refrigerated display cabinet using Modelica environment, International Journal of Refrigeration (2018), doi: 10.1016/j.ijrefrig.2018.02.017.
  • 12. Alessio Polzot, Paola D’Agaro, Paride Gullo, Giovanni Cortella, Modelling commercial refrigeration systems coupled with water storage to improve energy efficiency and perform heat recovery International Journal of Refrigeration 69 (2016) 313–323.
  • 13. Kresten K. Sørensen, Morten Juel Skovrup, Lars M. Jessen, Jakob Stoustrup Modular modeling of a refrigeration container International Journal of Refrigeration 55 (2015) 17-29.
  • 14. Rodrigo Link a, Cesar J. Deschamps, Numerical modeling of startup and shutdown transients in reciprocating compressors International Journal of Refrigeration 34 (2011) 1398-1414.
  • 15. Tae Hoon Lim, Younggy Shin, Sanghun Kim, Chunkyu Kwon, Predictive control of car refrigeration cycle with an electric compressor, Applied Thermal Engineering 127 (2017) 1223–1232.
  • 16. Eivind Brodal, Steve Jackson, Oddmar Eiksund Transient model of an RSW system with CO 2 refrigeration – A study of overall performance International Journal of Refrigeration 86 (2018) 344–355.
  • 17. Jing Wua, Emilie Gagniere, Francoise Couenne, Boussad Hamroun, Thierry Latour, Christian Jallut A hybrid transient model for simulation of air-cooled refrigeration systems: Description and experimental validation. International Journal of Refrigeration 53 (2015) 142-154.
  • 18. Matysko. R. Ammonia compressor stations, Refrigeration and Air conditioning, Gdansk 2015-in Polish.
  • 19. Matysko R. Theoretical model of the operation parameters regulated by the MIMO and SISO system in a cooling chamber, International Journal of Refrigeration Volume 58, October 2015, Pages 53-57.
  • 20. Matysko R. Selected issues of modeling, control and optimization of thermal cycles operating based on ORC systems, Scientific Papers of the Institute of Fluid-Flow Machinery of the Polish Academy of Sciences in Gdańsk, 2013-in Polish.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2302a8d2-b2e4-443d-8db4-e172fe3ca5e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.