Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rheumatoid arthritis (RA) is a systemic autoimmune disease that manifests itself by joint inflammation, swelling, pain, tenderness and may involve extra-articular organs in severe cases. Joint inflammatory lesions are associated with higher temperature due to increased vascularity in the area of inflamed tissues. This papers aimed to identify heat patterns from ROIs to interpret the presence of inflammation in rheumatoid arthritis patients. The thermovisual image sequences were collected from 65 patients with Rheumatoid Arthritis (RA). Infrared images were generated by a thermal scanning camera (FLIR E60bx Systems Inc., USA). Separate recordings of left and right foot temperature changes were performed for 3 minute periods. The temperature measurement was performed at the moment right after cold water immersion (post-cooling temperature) and at the moment after thermal recovery (post-recovery temperature). The recording of 3-minute foot thermal recovery was used for analysis. Automatically identified ROI corresponds to the area of the soft tissues covering cuboid and navicular bone.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
49--53
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Automatic Control and Robotics, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
autor
- Faculty of Mechanical Engineering, Department of Automatic Control and Robotics, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
autor
- Scientific and Research Department, Yanka Kupala State University of Grodno, Grodno, Belarus
Bibliografia
- 1. Afshar S., Sheehan M. (2017), Applying infrared thermography and image analysis to dilute 2-phase particulate systems: Hot Particle Curtains, Energy Procedia, 110, 408-413.
- 2. Barcelos Z.E., Caminhas W.M., Ribeiro E., Pimenta E.M., Palhares R.M. (2014), A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images, Sensors, 14, 21950-21967.
- 3. Bezerra H.G., Attizzani G.F., Sirbu V., Musumeci G., Lortkipanidze N., Fujino Y., Wang W., Nakamura S., Erglis A., Guagliumi G., Costa M.A. (2013), Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention, JACC Cardiovasc Interv., 6(3), 228-36.
- 4. Cojocaru M., Cojocaru I.M., Silosi I., Vrabie C.D., Tanasescub R., (2010), Extra-articular manifestations in rheumatoid arthritis; Maedica (Buchar), 5(4), 286–291.
- 5. Dey N., Ashour A.S., Chakraborty S., Banerjee S., Gospodinova E., Gospodinov M., Hassanien A.E. (2017), Watermarking in biomedical signal processing, Intelligent Techniques in Signal Processing for Multimedia Security, Dey N, Santhi V (eds); Springer International Publishing, 345 -369.
- 6. Fernández-Cuevas I., Bouzas Marins J.C., Arnáiz Lastras J., Gómez Carmona P.M., Piñonosa Cano S., García-Concepción M.A., Sillero-Quintana M. (2015), Classification of factors influencing the use of infrared thermography in humans: a review, Infrared Physics & Technology 71, 28–55.
- 7. Gabriel S.E. (2001), The epidemiology of rheumatoid arthritis, Rheum Dis Clin North Am., 27(2), 269–81.
- 8. Herman C., Pirtini Cetingul M. (2011, Quantitative visualization and detection of skin cancer using dynamic thermal imaging, J. Vis. Exp., 51, 1-4.
- 9. Ihnatouski M.I. (2000), Methods of segmentation of AFM and STM images. Recognition and description of cluster surface objects in the nanoscale IV Belarusian seminar on scanning probe microscopy (SPM-4). V.A. Belyi Metal Polymer Research Institute: 122-126.
- 10. John H.A., Niumsawatt V., Rozen W.M., Whitaker I.S. (2016), Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review, Gland Surg, 5(2), 122-132.
- 11. Jones B.F. (1998), A re-appraisal of the use of infrared thermal image analysis in medicine, IEEE Trans Med Imaging, 17,1019–27.
- 12. Kaczmarek M., Nowakowski A. (2016), Active IR-thermal imaging in medicine, J Nondestruct Eval, 35(19), 1-16.
- 13. Kovalev V., Petrou M. (1996), Multidimensional co-occurrence matrices for object recognition and matching, Graphical Models and Image Processing., 58(3), 187-197.
- 14. Lahiri B.B., Bagavathiappan S., Jayakumar T. (2012), Medical applications of infrared thermography, A review, Infrared Physics & Technology, 55(4), 221-235.
- 15. Ludwig N., Formenti D., Gargano M., Alberti G. (2014), Skin temperature evaluation by infrared thermography: comparison of image analysis methods, Infrared Physics & Technology, 62,1-6.
- 16. Nowakowski A., Siondalski P., Moderhak M., Kaczmarek M. (2014), Problems of cardiosurgery wound healing evaluation, Proceedings of QIRT, 1–9.
- 17. Nowakowski A., Siondalski P., Moderhak M., Kaczmarek M. (2015), A new diagnostic method for evaluation of cardiosurgery wound healing, JQIRT, 1–16.
- 18. Purslow C., Wolffsohn J.S., Santodomingo-Rubido J. (2005), The effect of contact lens wear on dynamic ocular surface temperature, Contact Lens & Anterior Eye, 28, 29–36.
- 19. Renkielska A., Kaczmarek M., Nowakowski A., Grudzinski J., Czapiewski P., Krajewski A., Grobelny I. (2014), Active dynamic infrared thermal imaging in burn depth evaluation, J. Burn Care Res, 35(5), 294–303.
- 20. Renkielska A., Nowakowski A., Kaczmarek M., Ruminski J. (2006), Burn depths evaluation based on active dynamic IR thermal imaging—a preliminary study, Burns, 32, 867–875.
- 21. Ring E.F.J. (1998), Progress in the measurement of human body temperature, IEEE Eng Med Biol, 17, 19–24.
- 22. Tattersall G.J. (2016), Infrared thermography: non-invasive window into thermal physiology, Comp Biochem Physiol A Mol Integr Physiol, 202, 78-98.
- 23. Wasilewska A. (2017), Advantages of active over passive thermography in terms of applying in medicine, Scientific and didactic equipment, 22(2), 88-93.
- 24. Wasilewska A., Pauk J. (2017), Safety conditions in dynamic IT examinations of rheumatoid arthritis lesions, Scientific and didactic equipment, 22(3), 205-214.
Uwagi
1. The work has been accomplished under the research project No. MB/WM/19/2016 financed by the Bialystok University of Technology.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22fe73c5-1a17-40e6-913f-fca57ab0146e