Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The curvature morphology of the articulating surfaces determines the physiological movement pattern. We quantitatively examined the curvature morphology of the tibiotalar articulating surfaces and specified their geometric contact patterns. Methods: Geometrically equivalent cartographic nets were marked on the talar and tibial articulating surfaces of true-to-scale moldings of 20 human ankle joints (intervals of 5 mm) to relate corresponding articulating units of the surfaces. The corresponding contours of the net lines were compared, and the incongruity of articulating surfaces could thus be quantified locally. Results: All tibial sagittal net lines represented circular arcs. Along the sagittal talar net lines, the curvature radii increased medially from anterior to posterior but decreased laterally. Each net line could be approximated by three circular arcs. Examining these three parts of the talar net lines, the anterior sagittal curvature radii increased from medial to lateral, whereas the posterior radii decreased. The tibial and talar transversal net lines were congruent. The articulation surfaces showed a transversal contact line in every dorsal/plantar joint position. The degree of local congruity was solely ascertained by the incongruity of the corresponding sagittal net lines. The maximal degrees of congruity were found laterally for dorsal flexion, laterally/centrally for neutral joint position, and centrally/medially for plantar flexion. Conclusions: By the transversal line contact, the contact area is broadened over the articulating surfaces from lateral to medial. In dorsal flexion, compressive loads are mainly transferred by lateral/anterior zones and in plantar flexion by medial/posterior zones of the articulating surfaces. Reconstruction of the transversal contact line is essential.
Czasopismo
Rocznik
Tom
Strony
83--90
Opis fizyczny
Bibliogr 30 poz., rys., tab.
Twórcy
autor
- Department of Orthodontics, University of Göttingen, Germany
autor
- Department of Orthodontics, University of Göttingen, Germany
autor
- Department of Orthodontics, University of Regensburg, Germany
autor
- Department of Orthodontics, University of Göttingen, Germany
autor
- Clinical Center Kassel, Germany
autor
- Department of Trauma, Plastic and Reconstructive Surgery, University of Göttingen, Germany
Bibliografia
- [1]. Calhoun J.H., Li F., Ledbetter B.R., Viegas S.F. A comprehensive study of pressure distribution in the ankle joint with inversion and eversion, Foot Ankle Int, 1994, vol. 15(3), 125-133.
- [2]. Dumont C., Ziehn C., Kubein-Meesenburg D., Fanghanel J., Sturmer, K.M., Nagerl, H. Quantified contours of curvature in female index, middle, ring, and small metacarpophalangeal joints, J Hand Surg Am, 2009, vol. 34(2), 317-325.
- [3]. Eames W.B., Wallace S.W., Suway N.B., Rogers L.B. Accuracy and dimensional stability of elastomeric impression materials, J Prosthet Dent, 1979, vol. 42(2), 159-162.
- [4]. Fick R.A. Handbuch der Anatomie und Mechanik der Gelenke, Fischer Verlag, Jena, 1904, 405-444.
- [5]. Forberger J., Sabandal P.V., Dietrich M., Gralla J., Lattmann T., Platz A., Posterolateral approach to the displaced posterior malleolus: functional outcome and local morbidity, Foot Ankle Int, 2009, vol. 30(4), 309-314.
- [6]. Hansen C.C. Zur Biomechanik des oberen Sprunggelenkes, University of Göttingen, Göttingen, 2001.
- [7]. Horisberger M., Valderrabano V., Hintermann B. Posttraumatic ankle osteoarthritis after ankle-related fractures, J Orthop Trauma, 2009, vol. 23(1), 60-67.
- [8]. Inman V. The joints of the ankle, Williams & Williams, Baltimore, 1976.
- [9]. Kimizuka M., Kurosawa H., Fukubayashi T. Load-bearing pattern of the ankle joint. Contact area and pressure distribution, Arch Orthop Trauma Surg, 1980, vol. 96(1), 45- 49.
- [10]. Kubein-Meesenburg D., Nagerl H., Cotta H., Fanghanel J. Biomechanical principles in diarthroses and synarthroses. I: Basic concepts in diarthroses, Zeitschrift fur Orthopadie und ihre Grenzgebiete, 1993, vol. 131(2), 97-104.
- [11]. Kura H., Kitaoka H. B., Luo Z.P., An K.N. Measurement of surface contact area of the ankle joint, Clin Biomech (Bristol, Avon), 1998, vol. 13(4-5), 365-370.
- [12]. Landau L.D.L., E.M., Elastizitätstheorie, Lehrbuch der theoretischen Physik, H. G. Schöpf, ed.Frankfurt, 2010.
- [13]. Leardini A., Catani F., Giannini S., O'Connor J.J. Computer-assisted design of the sagittal shapes of a ligament-compatible total ankle replacement, Med Biol Eng Comput, 2001, vol. 39(2), 168-175.
- [14]. Medley J.B., Dowson D., Wright V. Surface geometry of the human ankle joint, Eng Med, 1983, vol. 12(1), 35-41.
- [15]. Michelson J.D. Fractures about the ankle, J Bone Joint Surg Am, 1995, vol. 77(1), 142- 152.
- [16]. Muehleman C., Margulis A., Bae W.C., Masuda K. Relationship between knee and ankle degeneration in a population of organ donors, BMC Med, 2010, vol. 8, 48.
- [17]. Nagerl H., Kubein-Meesenburg D., Cotta H., Fanghanel J. Biomechanical principles of diarthroses and synarthroses. III: Mechanical aspects of the tibiofemoral joint and role of the cruciate ligaments, Zeitschrift fur Orthopadie und ihre Grenzgebiete, 1993, vol. 131(5), 385-396.
- [18]. Nagerl H., Walters J., Frosch K.H., Dumont C., Kubein-Meesenburg D., Fanghanel J., Wachowski M.M. Knee motion analysis of the non-loaded and loaded knee: a re-look at rolling and sliding, J Physiol Pharmacol, 2009, vol. 60 Suppl 8, 69-72.
- [19]. Paar O., Rieck B., Bernett P. Experimental studies on load-bearing pressure and contact areas in the ankle joint, Unfallheilkunde, 1983, vol. 86(12), 531-534.
- [20]. Reimann R., Anderhuber F., Gerold J. The geometry of the human trochlea tali, Acta Anat (Basel), 1986, vol. 127(4), 271-278.
- [21]. Riede U.N., Muller M., Mihatsch M.J. Biometric studies elucidating the pathogenesis of arthrosis exemplified by the ankle joint (author's transl), Arch Orthop Unfallchir, 1973, vol. 77(3), 181-194.
- [22]. Schaefer K.L., Sangeorzan B.J., Fassbind M.J., Ledoux W.R. The comparative morphology of idiopathic ankle osteoarthritis, J Bone Joint Surg Am, 2012, vol. 94(24), e181. [
- [23]. Schmidt H.M. The articular surfaces of the human ankle joint, Adv Anat Embryol Cell Biol, 1981, vol. 66, 1-81.
- [24]. Seiler H. Biomechanics of the upper ankle joint, Orthopade, 1986, vol. 15(6), 415-422.
- [25]. Stauffer R.N., Chao E.Y., Brewster R.C. Force and motion analysis of the normal, diseased, and prosthetic ankle joint, Clin Orthop Relat Res, 1977, vol. 127, 189-196.
- [26]. Stormont D.M., Morrey B.F., An K.N., Cass J.R. Stability of the loaded ankle. Relation between articular restraint and primary and secondary static restraints, Am J Sports Med, 1985, vol. 13(5), 295-300.
- [27]. Valderrabano V., Horisberger M., Russell I., Dougall H., Hintermann B. Etiology of ankle osteoarthritis, Clin Orthop Relat Res, 2009, vol. 467(7), 1800-1806.
- [28]. van den Bekerom M.P., Haverkamp D., Kloen P. Biomechanical and clinical evaluation of posterior malleolar fractures. A systematic review of the literature, J Trauma, 2009, vol. 66(1), 279-284.
- [29]. Veljkovic A., Norton A., Salat P., Saltzman C., Femino J. Phisitkul, P., Amendola A. Lateral talar station: a clinically reproducible measure of sagittal talar position, Foot Ankle Int, 2013, vol. 34(12), 1669-1676.
- [30]. Windisch G., Odehnal B., Reimann R., Anderhuber F., Stachel H., Contact areas of the tibiotalar joint, J Orthop Res, 2007, vol. 25(11), 1481-1487.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22f5914c-1e95-4474-939f-da90f8005644