Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the second order nonhomogeneous linear differential equation (p(t)y′(t))′ + q(t)y(t) = f(t), which is oscillatory under the assumption that p(t) and q(t) are positive, continuously differentiable and monotone functions on [0,∞). Throughout this paper we shall use pairs of quadratic forms, which obtained by different methods than Kusano and Yoshida. This form will lead to a property of qualitative behavior, including amplitudes and slopes, of oscillatory solutions of the above equation. In addition, we will discuss the existence of three types (moderately bounded, small, large) of oscillatory solutions, which are based on results due to Kusano and Yoshida.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
867--885
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Kanazawa University, Faculty of Engineering, Ishikawa, 920-1152, Japan
Bibliografia
- [1] S. Abramovich, On the behavior of the solutions of y′′ + p(x)y = f(x), J. Math. Anal. Appl. 52 (1975), 465–470.
- [2] P. Hartman, The existence of large or small solutions of linear differential equations, Duke Math. J. 28 (1961), 421–430.
- [3] P. Hartman, Ordinary Differential Equations, Second Edition, Birkh¨auser, Boston, 1982.
- [4] P. Hartman, A. Wintner, An inequality for the amplitudes and areas in vibration diagrams of time-dependent frequency, Quart. Appl. Math. 10 (1952), 175–176.
- [5] E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley Publishing Company, 1969.
- [6] T. Kusano, N. Yoshida, Existence and qualitative behavior of oscillatory solutions of second order linear ordinary differential equations, Acta Math. Univ. Commenianae 86 (2017), no. 1, 23–50.
- [7] R.A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125–145.
- [8] S.M. Rankin, Oscillation theorems for second-order nonhomogeneous linear differential equations, J. Math. Anal. Appl. 53 (1976), 550–553.
- [9] A. Skidmore, J.J. Bowers, Oscillatory behavior of the solutions of y′′ + p(x)y = f(x), J. Math. Anal. Appl. 49 (1975), 317–323.
- [10] A. Skidmore, W. Leighton, On the differential equation y′′ + p(x)y = f(x), J. Math. Anal. Appl. 43 (1973), 46–55.
- [11] C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968.
- [12] S.C. Tefteller, Oscillation of second order nonhomogeneous linear differential equations, SIAM J. Appl. Math. 31 (1976), 461–467.
- [13] A.A.S. Zaghrout, A.A. Ragab, Oscillatory behavior solutions of y′′ + p(x)y = f(x), Indian J. Pure Appl. Math. 16 (1985), 853–858.
- [14] A.A.S. Zaghrout, A.A. Ragab, Oscillatory behavior solutions of y′′ +p(x)y = f(x), Acta Math. Sci. (English Ed.) 10 (1990), 355–360.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22f38682-bfc7-44db-9b69-a67130b37811