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Abstract. The paper deals with the second order nonhomogeneous linear differential
equation

(p(t)y′(t))′ + q(t)y(t) = f(t),

which is oscillatory under the assumption that p(t) and q(t) are positive, continuously
differentiable and monotone functions on [0, ∞). Throughout this paper we shall
use pairs of quadratic forms, which obtained by different methods than Kusano and
Yoshida. This form will lead to a property of qualitative behavior, including amplitudes
and slopes, of oscillatory solutions of the above equation. In addition, we will discuss
the existence of three types (moderately bounded, small, large) of oscillatory solutions,
which are based on results due to Kusano and Yoshida.
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1. INTRODUCTION

The theory of second order differential equations about the methods used in their
solutions and their wide applications have a long history, and there is many existing
literature on the subject [2–4, 7, 11]. As far as oscillation theory is concerned, most
articles in second order differential equations deal with whether the equations oscillate.
However, to the best of our knowledge, only several researchers have attempt to
establish the relations about properties of oscillatory solutions between homogeneous
equations and nonhomogeneous equations. Let us consider the second order homoge-
neous equation

(p(t)y′(t))′ + q(t)y(t) = 0, (1.1)
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and the nonhomogeneous equation

(p(t)y′(t))′ + q(t)y(t) = f(t), (1.2)

where p(t), q(t) ∈ C1([0, ∞), (0, ∞)) and f(t) ∈ C([0, ∞), (−∞, ∞)). Recently, Kusano
and Yoshida [6] have acquired as much and detailed information as possible about
the existence and the qualitative properties of oscillatory solutions of homogeneous
equation (1.1) which was based on a work due to Hille [5] and Hartman [3]. So, our
primary interest is to prove the existence and the qualitative properties of oscillatory
solutions of nonhomogeneous equation. Therefore, while using the results of [6], we will
extend their results to nonhomogeneous equation (1.2). By a solution of equation (1.1)
or (1.2), we mean a function y(t) ∈ C2([Ty, ∞), (−∞, ∞)), Ty ≥ t0, which satisfies
equation (1.1) or (1.2) on [Ty, ∞). We restrict our attention to the nontrivial solution
y(t) of equations (1.1) or (1.2) only, i.e., to solutions satisfying sup{|y(t)| : t ≥ T} > 0
for all T ≥ Ty. A nontrivial solution (1.1) or (1.2) is oscillatory if it has arbitrarily
large zeros, otherwise, it is called nonoscillatory.

Thus, let y(t) be an oscillatory solution on [0, ∞) of (1.1) or (1.2), and we adopt
definition as follows.
Definition 1.1. The sequences {σk}∞

k=1 and {τk}∞
k=1 are said to be distribution of

zeros points and extrema points of oscillatory solution, if there exist σk < σk+1 and
τk < τk+1 (k = 1, 2, . . .) such that y(σk) = 0 and y′(τk) = 0 for any k.
Definition 1.2. The value |y(τk)| and |y′(σk)| are referenced to as the amplitude A[y]
and the slope S[y], respectively, of the k-th wave of y(t).

In this paper we use the following notation:

A∗[y] = sup
k

|y(τk)|, A∗[y] = inf
k

|y(τk)|,

S∗[y] = sup
k

|y′(σk)|, S∗[y] = inf
k

|y′(σk)|.

Definition 1.3.
(i) A solution y(t) of equations is said to be large oscillatory, if y(t) satisfies

A∗[y] = ∞, i.e. lim sup
t→∞

|y(t)| = ∞.
(ii) A bounded solution y(t) of equations is said to be small oscillatory, if y(t) satisfies

lim
k→∞

|y(τk)| = 0, i.e. lim
t→∞

|y(t)| = 0.
(iii) A bounded solution y(t) of equations is said to be moderately bounded oscillatory,

if y(t) satisfies A∗[y] > 0, i.e. lim inf
k→∞

|y(τk)| > 0.

The starting results for qualitative properties, including amplitude and slope, of
oscillatory solutions are Hille [5] and Hartman [3], to the best of the author’s knowledge,
who utilized a pair of quadratic forms. Inspired by these results, Kusano and Yoshida
showed that for more general equation (1.1), there always exists a pair of quadratic
forms of the type

V[y](t) = P (t)y′(t)2 + Q(t)y(t)2, W[y](t) = R(t)y′(t)2 + S(t)y(t)2,
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so that established existence of three types of solutions of (1.1) referred to as moderately
bound, small and large oscillatory solutions. We concern exclusively with the case
where equation (1.1) is oscillatory also in this paper. It is known [7] that (1.1) is
oscillatory if

∞∫

0

dt

p(t) = ∞ and
∞∫

0

P (t)λq(t)dt = ∞ for some λ ∈ [0, 1), (1.3)

where P (t) =
∫ t

0 ds/p(s), or if
∞∫

0

dt

p(t) < ∞ and
∞∫

0

π(t)µq(t)dt = ∞ for some µ ∈ (1, 2], (1.4)

where π(t) =
∫ ∞

t
ds/p(s).

2. PRELIMINARIES

In this section we introduce a pair of positive quadratic forms {V[y], W[y]} and
{F [y], G[y]} which are an important tool in acquiring as much and detailed information
as possible about the existence and qualitative properties of oscillatory solutions of
equations (1.1) and (1.2). At first, we apply different method from the results [6] to
derive the same following lemma as Kusano and Yoshida. The difference with the
result of [6] is that it is derived directly from the equation (1.1).
Lemma 2.1. Let (1.1) be oscillatory and yh(t) be a solution of (1.1) on [0, ∞).
Suppose one of the following statements holds:

(i) If p′(t) ≥ 0 and q′(t) ≤ 0, and set

V[y](t) = p(t)2

q(t) y′
h(t)2 + p(t)yh(t)2, W[y](t) = p(t)y′

h(t)2 + q(t)yh(t)2.

(ii) If p′(t) ≤ 0 and q′(t) ≥ 0, and set

V[y](t) = p(t)y′
h(t)2 + q(t)yh(t)2, W[y](t) = p(t)2

q(t) y′
h(t)2 + p(t)yh(t)2.

(iii) If (p(t)q(t))′ ≥ 0, and set

V[y](t) = p(t)2y′
h(t)2 + p(t)q(t)yh(t)2, W[y](t) = p(t)

q(t)y′
h(t)2 + yh(t)2.

(iv) If (p(t)q(t))′ ≤ 0, and set

V[y](t) = p(t)
q(t)y′

h(t)2 + yh(t)2, W[y](t) = p(t)2y′
h(t)2 + p(t)q(t)yh(t)2.

Then (V[y](t))′ ≥ 0 and (W[y](t))′ ≤ 0.
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Proof. Let yh(t) be any solution of (1.1) on [0, ∞). Multiplying (1.1) by p(t)y′
h(t) and

dividing by q(t) yield

[
p(t)2

q(t) y′
h(t)2 + p(t)yh(t)2

]′
= p′(t)yh(t)2 − q′(t)

q(t)2

(
p(t)y′

h(t)
)2

≥ 0. (2.1)

On the other hand, (1.1) is equivalent to the following equation

p(t)y′′
h(t) + p′(t)y′

h(t) + q(t)yh(t) = 0. (2.2)

Multiplying (2.2) by y′
h(t), we obtain the equation

[
p(t)y′

h(t)2 + q(t)yh(t)2
]′

= −p′(t)y′
h(t)2 + q′(t)yh(t)2 ≤ 0. (2.3)

Hence, we can prove that (i) hold. From the above inequalities, if p′(t) ≤ 0 and
q′(t) ≥ 0, then we show that (ii) hold. Clearly it is easily checked from (2.1) and (2.3)
that (i) and (ii) hold. Multiplying (1.1) by p(t)y′

h(t) we have

[
p(t)2y′

h(t)2 + p(t)q(t)yh(t)2
]′

= (p(t)q(t))′yh(t)2. (2.4)

Moreover we show by multiplying (2.2) by y′
h(t) and dividing by q(t) that

[
p(t)
q(t)y′

h(t)2 + yh(t)2
]′

= − (p(t)q(t))′

q(t)2 y′
h(t)2. (2.5)

Similar to the proof of the cases (i) and (ii), it is obvious from these relations (2.4)
and (2.5) that (iii) and (iv) hold.

Since the equation (1.2) is linear, then we know that

y(t) = c1y1(t) + c2y2(t) + yp(t) = yh(t) +
t∫

0

G(t, τ)f(τ)dτ

is a solution of the nonhomogeneous equation, where yp(t) is a particular solution and

G(t, τ) = y1(τ)y2(t) − y1(t)y2(τ)
p(τ)W (τ)

is the Green function, W (τ) = y1y′
2 −y′

1y2 is the Wronskian and y1, y2, yh are solutions
of the homogeneous equation. Also, we easy to see that particular solution satisfies
the initial conditions yp(0) = y′

p(0) = 0.
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Lemma 2.2. Let (1.2) be oscillatory and y(t) be a solution of (1.2) on [0, ∞). Suppose
one of the following statements holds:

(i) If p′(t) ≥ 0 and q′(t) ≤ 0, and set

F [y](t) = p(t)2

q(t)

(
y′(t) + y′

p(t)
)2

+ p(t)
(

y(t) + yp(t)
)2

,

G[y](t) = p(t)
(

y′(t) + y′
p(t)

)2
+ q(t)

(
y(t) + yp(t)

)2
.

(ii) If p′(t) ≤ 0 and q′(t) ≥ 0, and set

F [y](t) = p(t)
(

y′(t) + y′
p(t)

)2
+ q(t)

(
y(t) + yp(t)

)2
,

G[y](t) = p(t)2

q(t)

(
y′(t) + y′

p(t)
)2

+ p(t)
(

y(t) + yp(t)
)2

.

(iii) If (p(t)q(t))′ ≥ 0, and set

F [y](t) = p(t)2
(

y′(t) + y′
p(t)

)2
+ p(t)q(t)

(
y(t) + yp(t)

)2
,

G[y](t) = p(t)
q(t)

(
y′(t) + y′

p(t)
)2

+
(

y(t) + yp(t)
)2

.

(iv) If (p(t)q(t))′ ≤ 0, and set

F [y](t) = p(t)
q(t)

(
y′(t) + y′

p(t)
)2

+
(

y(t) + yp(t)
)2

,

G[y](t) = p(t)2
(

y′(t) + y′
p(t)

)2
+ p(t)q(t)

(
y(t) + yp(t)

)2
.

Then (F [y](t))′ ≥ 0 and (G[y](t))′ ≤ 0.

Proof. Let y(t) be any solution of (1.2) on [0, ∞). Case (i). Rewriting (1.2) as
(

p(t)y′(t) + p(t)y′
p(t)

)′
+ q(t)

(
y(t) + yp(t)

)
= 0. (2.6)

Multiplying (2.6) by (p(t)y′(t) + p(t)y′
p(t)) and dividing by q(t) yield

[
p(t)2

q(t)

(
y′(t) + y′

p(t)
)2

+ p(t)
(

y(t) + yp(t)
)2

]′

= p′(t)
(

y(t) + yp(t)
)2

− q′(t)p(t)2

q(t)2

(
y′(t) + y′

p(t)
)2

≥ 0.

Furthermore, (1.2) shows that

p(t)y′′(t) + p′(t)y′(t) + q(t)y(t) = (p(t)y′
p(t))′ + q(t)yp(t),
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and so

p(t)
(

y′′(t) + y′′
p (t)

)
+ p′(t)

(
y′(t) + y′

p(t)
)

+ q(t)
(

y(t) + yp(t)
)

= 0. (2.7)

Multiplying (2.7) by (y′(t) + y′
p(t)), we obtain

[
p(t)

(
y′(t) + y′

p(t)
)2

+ q(t)
(

y(t) + yp(t)
)2

]′

= −p′(t)
(

y′(t) + y′
p(t)

)2
+ q′(t)

(
y(t) + yp(t)

)2
≤ 0.

Obviously, (i) hold. The proof for (ii) is similar. In order to establish the cases (iii)
and (iv), multiplying (2.6) by p(t)(y′(t) + y′

p(t)) becomes
[
p(t)2

(
y′(t) + y′

p(t)
)2

+ p(t)q(t)
(

y(t) + yp(t)
)2

]′
= (p(t)q(t))′

(
y(t) + yp(t)

)2
.

Multiplying (2.7) by (y′(t) + y′
p(t)) yields

[
q(t)
p(t)

(
y′(t) + y′

p(t)
)2

+
(

y(t) + yp(t)
)2

]′
= − q(t)2

(p(t)q(t))′

(
y(t) + y′

p(t)
)2

.

If the condition (p(t)q(t))′ ≥ 0, then the case (iii) hold, and if the condition
(p(t)q(t))′ ≤ 0, then the case (iv) hold. The proof is complete.

The problem of establishing oscillation criteria for second order nonhomogeneous
linear equations has been investigated by several authors [1,8–10,12–14]. They studied
how oscillation of the solutions of homogeneous equation (1.2) can be influenced by
the forcing term f(t). From one important approach pursued by Tefteller [12], if
{y1(t), y2(t)} is normalized, then the general solution of (1.2) can be expressed as

y(t) =


c1 −

t∫

0

y2(τ)f(τ)dτ


 y1(t) +


c2 +

t∫

0

y1(τ)f(τ)dτ


 y2(t).

Making use of this solution, he led to the following results.
Lemma 2.3 ([12]). Suppose y(t) is a solution of (1.2) and yh(t) is any nontrivial
solution of (1.1). Then

W (yh, y) = k +
t∫

t0

f(τ)yh(τ)dτ

for some constant k.
Theorem 2.4 ([12]). Suppose f(t) ̸= 0 on [0, ∞), y(t) is a solution of (1.2), and
yh(t) is a nontrivial solution of (1.1). Then W (yh, y) ̸= 0 on [0, ∞) if and only if y(t)
has only simple zeros and the zeros of y(t) and yh(t) separate on [0, ∞).
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Theorem 2.5 ([12]). Let y1(t) solve (1.1) and suppose that for a given k and f(t) ̸= 0,
the function k +

∫ t

0 f(τ)y1(τ)dτ is nonoscillatory. Then W (yh, y) ̸= 0, and so, (1.2) is
oscillatory if and only if (1.1) is oscillatory.
Corollary 2.6 ([12]). Suppose the forcing function f(t) is a solution of (1.2). Then
W (yh, y) ̸= 0, and so, (1.2) is oscillatory if and only if (1.1) is oscillatory.

Among these literature, Skidmore and Leighton [10] and Abramovich [1] proved
theorem concerning the oscillatory phenomena and qualitative behaviors of solutions
of (1.2) with p(t) = 1. Thus, we shall revise and extend this results, and state the
following useful results.
Theorem 2.7. Assume that (1.2) is oscillatory and f(t) is nonnegative. If
(p(t)q(t))′ ≥ 0 and (p(t)f(t))′ ≥ 0, then each peak of oscillatory solution of (1.2)
is at least as high as the next and its amplitude is at least as great as that of the next
pit.
Proof. Let t0 < t1 < t2 < t3 < t4 be consecutive zeros of oscillatory solution y(t) of
(1.2) with y(t) > 0 on (t0, t1), y(t) < 0 on (t1, t2), y(t) > 0 on (t2, t3), y(t) < 0 on
(t3, t4). Let t = b, c, d, e be, respectively, the points on these intervals at which y(t)
attains its maximum, minimum, maximum, minimum values. For this, let us denote

−y(c) ≥ y(d) and − y(c) ≥ −y(e). (2.8)

Then we assume the contrary, and let t = c1 be the minimum point on (t1, t2), and

−y(c1) < y(d).

By changing the variables u(t) = −y(t), we obtain

u(c1) < −u(d)

and
(p(t)u′(t))′ + q(t)u(t) = −f(t). (2.9)

Multiplying (2.9) by 2p(t)u′(t) and integrating over [c1, d], we have

[
(p(t)u′(t))2 + p(t)q(t)u(t)2

]d

c1
=

d∫

c1

{
(p(t)q(t))′u(t)2 − 2(p(t)f(t))u′(t)

}
dt. (2.10)

Since u′(t) ≥ 0 on the interval (c1, d), this equation becomes

p(d)q(d)u(d)2 − p(c1)q(c1)u(c1)2 ≤
d∫

c1

(p(t)q(t))′u(t)2dt

≤ u(d)2
{

p(d)q(d) − p(c1)q(c1)
}

.

Then it follows that
p(c1)q(c1){u(d)2 − u(c1)2} ≤ 0,

which provides a contradiction. Accordingly, we see that −y(c1) ≥ y(d).
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If y(c1) is the absolute minimum ymin on (t1, t2), then −y(c) ≥ y(d). If it is not,
then −ymin > −y(c1) ≤ y(d).

Next we assume the contrary that −y(c) < −y(e), and so, −u(d) < u(c) < u(e).
We apply (2.10) on the interval (c, e), then

[
(p(t)u′(t))2 + p(t)q(t)u(t)2

]e

c
=

e∫

c

{
(p(t)q(t))′u(t)2 − 2(p(t)f(t))u′(t)

}
dt

=
[
−2p(t)f(t)u(t)

]e

c

+
e∫

c

{
(p(t)q(t))′u(t)2 + 2(p(t)f(t))′u(t)

}
dt.

It is obvious that

p(e)q(e)u(e)2 − p(c)q(c)u(c)2

≤
{

−2p(e)f(e)u(e) + 2p(c)f(c)u(c)
}

+ u(e)2
{

p(e)q(e) − p(c)q(c)
}

+ u(e)
{

2p(e)f(e) − 2p(c)f(c)
}

.

Thus, we see that

p(c)q(c)
{

u(e)2 − u(c)2
}

≤ −2p(c)f(c)
{

u(e) − u(c)
}

,

which implies to
q(c)

{
u(e) + u(c)

}
≤ −2f(c).

From u(c) < u(e) it follows that

−f(c) − q(c)u(c) > 0.

However, t = c is relative maximum point of u(t), and

u′′(t) = 1
p(c)

{
−f(c) − q(c)u(c)

}
≤ 0.

From this contradiction we can lead to the inequalities (2.8), and the conclusion of
the theorem follows.

Analogously, we can prove the following corollary.

Corollary 2.8. Assume that (1.2) is oscillatory and f(t) is nonnegative. If
(p(t)q(t))′ ≥ 0 and (p(t)f(t))′ ≤ 0, then each peak of oscillatory solution of (1.2)
is at least as high as the next and its amplitude is at least as great as that of the
next pit.
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Proof. The same as in Theorem 2.3, it is sufficient to show that

y(b) ≥ −y(c) and y(d) ≥ y(d). (2.11)

Then we suppose to the contrary that there exists t = b1 such that

y(b1) < −y(c).

Multiplying (1.2) by 2p(t)y′(t) and integrating over (b1, c), we obtain

p(b1)q(b1)
{

y(c)2 − y(b1)2
}

≤ 0,

which provides a contradiction. Next we turn our attention to the second inequality
(2.11) and suppose that y(b) < y(d). It is obvious that −y(c) ≥ y(b) < y(d). As in the
same proof of Theorem 2.3, it is easy to see that

f(b) − q(b)y(b) > 0.

The rest of the proof is similar to that of Theorem 2.3 and hence is omitted.

On the other hand, the following theorem is based on the work [1]. This theorem
will be used to prove the main results of Sections 3 and 4 in this paper.

Theorem 2.9. Assume that (1.1) has bounded oscillatory solutions and (1.2) is
oscillatory. If ( f(t)

q(t) )′ ≤ 0, then the maxima of a solution of (1.2) are nonincreasing.
In particular, if ( f(t)

q(t) )′ < 0, then the maxima of a solution of (1.2) are decreasing.

Proof. By changing the variables u1(t) = −y′
h(t) or u(t) = −y′(t), respectively,

equation (1.1) or (1.2) are transformed into

(
(p(t)u1(t))′

q(t)

)′
+ u1(t) = 0 (2.12)

or (
(p(t)u(t))′

q(t)

)′
+ u(t) = −

(
f(t)
q(t)

)′
, (2.13)

respectively. Let t = d, t = e and t = h be, respectively, a consecutive maximum,
minimum and maximum of a solution y(t) of (1.2). They are consecutive zeros of
a solution (2.14). Let t = d̄, t = ē and t = h̄ be, respectively, a consecutive maximum,
minimum and maximum of a solution yh(t) of (1.1). They are consecutive zeros of
a solution (2.12). Let u1(t) be the solution of (2.12) that satisfies

u1(ē) = 0, u′
1(ē) < 0.
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Multiplication of (2.12) by u(t), (2.14) by u1(t), subtraction of the resulting equations,
and integration over (t, ē) and (ē, t) yield

−
ē∫

t

(
f(t)
q(t)

)′
p(t)u1(t)dt =

[
(p(t)u(t))′

q(t) p(t)u1(t) − (p(t)u1(t))′

q(t) p(t)u(t)
]ē

t

= −p(ē)u′
1(ē)

q(ē) p(ē)u(ē)

− 1
q(t)

{
(p(t)u(t))′p(t)u1(t) − (p(t)u1(t))′p(t)u(t)

}

for t ∈ (d̄, ē), and

−
t∫

ē

(
f(t)
q(t)

)′
p(t)u1(t)dt = p(ē)u′

1(ē)
q(ē) p(ē)u(ē)

+ 1
q(t)

{
(p(t)u(t))′p(t)u1(t) − (p(t)u1(t))′p(t)u(t)

}

for t ∈ (ē, h̄). Since u1(ē) = 0, u′
1(ē) < 0 and u(ē) < 0, we obtain

1
q(t)

{
(p(t)u(t))′p(t)u1(t) − (p(t)u1(t))′p(t)u(t)

}
≤

ē∫

t

(
f(t)
q(t)

)′
p(t)u1(t)dt

and

1
q(t)

{
(p(t)u(t))′p(t)u1(t) − (p(t)u1(t))′p(t)u(t)

}
≤ −

t∫

ē

(
f(t)
q(t)

)′
p(t)u1(t)dt.

In the interval (d̄, h̄), we shall prove that
(

(p(t)u(t))′p(t)u1(t) − (p(t)u1(t))′p(t)u(t)
)

≤ 0,

because −
(

f(t)
q(t)

)′
is nonnegative. Here it is easy to show that

(
u1(t)
u(t)

)′
=

(
p(t)u1(t)
p(t)u(t)

)′
= (p(t)u(t))′p(t)u1(t) − (p(t)u1(t))′p(t)u(t)

(p(t)u(t))2 ≥ 0.

Integrating (2.12) over (α, β) yields

u1(β)
u(β) ≥ u1(α)

u(α) , (2.14)
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where α ∈ (d̄, e) and β ∈ (ē, h). Set u1(α)
u(α) ≡ k > 0 for some α, then (2.14) reduces to

u1(β) − ku(β) ≤ 0

in view of u(β) ≤ 0. On the other hand, choose u1(β)
u(β) ≡ k > 0 for some β so that

u1(α) − ku(α) ≤ 0

for u(α) ≥ 0. Consequently, we can establish the following

u1(t) − ku(t) ≤ 0, t ∈ (d̄, e) ∪ (ē, h).

From the relations u1(t) = −ȳ(t) and u(t) = −y′(t), we obtain
(

ky(t) − yh(t)
)′

≤ 0, t ∈ (d̄, e) ∪ (ē, h),

which implies that
k
(

y(d̄) − y(h)
)

≥ yh(d̄) − yh(h).

From this fact, using the results of Kusano and Yoshida [6], we can lead to

k
(

y(d) − y(h)
)

≥ k
(

y(d̄) − y(h)
)

≥ yh(d̄) − yh(h̄) ≥ 0.

As in the other theorem, it is easy to see that y(d) > y(h) if
(

f(t)
p(t)

)′
≠ 0, d ≤ t ≤ h.

Thus, the conclusion of the theorem follows.

3. MODERATELY BOUNDED OSCILLATORY SOLUTIONS

Our aim in this section is to establish explicit upper bounds for A∗ and S∗ as well
as explicit lower bounds for A∗ and S∗ for all oscillatory solutions of (1.1) or (1.2)
satisfying the initial conditions

y(0) = α, y′(0) = β, (3.1)

and α, β are any given constants such that (α, β) ̸= 0. By applying the similar proof
of Theorems 3.1 and 3.2 in [6] which can be extended to the equation (1.2). Thus,
we establish the following four pairs of inequalities. If p′(t) ≥ 0 and q′(t) ≤ 0,

p(0)q(0)α2 + p(0)2β2

p(τk)q(0) − p(τk)2y′
p(τk)2

p(τk)q(τk) ≤
(

y(τk) + yp(τk)
)2

,

(
y(τk) + yp(τk)

)2
≤ q(0)α2 + p(0)β2 − p(τk)y′

p(τk)2

q(τk) .
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If p′(t) ≤ 0 and q′(t) ≥ 0,

q(0)α2 + p(0)β2 − p(τk)y′
p(τk)2

q(τk) ≤
(

y(τk) + yp(τk)
)2

,

(
y(τk) + yp(τk)

)2
≤ p(0)q(0)α2 + p(0)2β2

p(τk)q(0) − p(τk)2y′
p(τk)2

p(τk)q(τk) .

If (p(t)q(t))′ ≥ 0,

p(0)q(0)α2 + p(0)2β2 − p(τk)2y′
p(τk)2

p(τk)q(τk) ≤
(

y(τk) + yp(τk)
)2

,

(
y(τk) + yp(τk)

)2
≤ q(0)α2 + p(0)β2

q(0) − p(τk)y′
p(τk)2

q(τk) .

If (p(t)q(t))′ ≤ 0,

q(0)α2 + p(0)β2

q(0) − p(τk)y′
p(τk)2

q(τk) ≤
(

y(τk) + yp(τk)
)2

,

(
y(τk) + yp(τk)

)2
≤ p(0)q(0)α2 + p(0)2β2 − p(τk)2y′

p(τk)2

p(τk)q(τk) .

Taking the supremum and infimum on both sides of the above inequality as k → ∞,
then one can show the situations in which upper and lower amplitudes A∗[y] and
A∗[y] of the solution with consideration for A∗[y] < ∞ and A∗[y] > 0. We will use the
following notation:

A[yp] = lim sup
t→∞

|yp(t)|, A[yp] = lim inf
t→∞

|yp(t)|,

S[yp] = lim sup
t→∞

|y′
p(t)|, S[yp] = lim sup

t→∞
|y′

p(t)|,

S[yp] = lim sup
t→∞

|y′
p(t)|, S[yp] = lim inf

t→∞
|y′

p(t)|.

Theorem B and Theorem 2.5 imply that yp(t) is oscillatory particular solution of (1.2)
such that

A[yp] < ∞, A[yp] < ∞,

S[yp] < ∞, S[yp] < ∞.

From Lemma 2.2 we obtain the following results:

Theorem 3.1. Let (1.1) be oscillatory, the Wronskian W (yh, y) ̸= 0 and
(

f(t)
q(t)

)′
≤ 0

hold, and let y(t) be a solution of (1.2) on [0, ∞) satisfying (3.1).
(i) Suppose that p′(t) ≥ 0 and q′(t) ≤ 0 for t ≥ 0. If q(∞) > 0, then

A∗[y] ≤
√

|q(0)α2 + p(0)β2 − p(∞)S[yp]2|
q(∞) − A[yp],
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if p(∞) < ∞ and q(∞) > 0, then

A∗[y] ≥
√∣∣q(∞)(p(0)q(0)α2 + p(0)2β2) − q(0)(p(∞)S[yp])2

∣∣
p(∞)q(0)q(∞) − A[yp].

(ii) Suppose that p′(t) ≤ 0 and q′(t) ≥ 0 for t ≥ 0. If p(∞) > 0 and q(∞) < ∞, then

A∗[y] ≤
√

|q(∞)(p(0)q(0)α2 + p(0)2β2) − q(0)(p(∞)S[yp])2|
p(∞)q(0)q(∞) − A[yp],

if q(∞) < ∞, then

A∗[y] ≥
√∣∣q(0)α2 + p(0)β2 − p(∞)S[yp]2

∣∣
q(∞) − A[yp].

(iii) Suppose that (p(t)q(t))′ ≥ 0 for t ≥ 0. If p(∞)q(∞) < ∞, then

A∗[y] ≤
√

|q(∞)(q(0)α2 + p(0)β2) − q(0)p(∞)S[yp]2|
q(0)q(∞) − A[yp],

A∗[y] ≥
√∣∣p(0)(q(0)α2 + p(0)2β2) − (p(∞)S[yp])2

∣∣
p(∞)q(∞) − A[yp].

(iv) Suppose that (p(t)q(t))′ ≤ 0 for t ≥ 0. If p(∞)q(∞) > 0, then

A∗[y] ≤
√

|p(0)(q(0)α2 + p(0)2β2) − (p(∞)S[yp])2|
p(∞)q(∞) − A[yp],

A∗[y] ≥
√∣∣q(∞)(q(0)α2 + p(0)β2) − q(0)p(∞)S[yp]2

∣∣
q(0)q(∞) − A[yp].

On the other hand, we establish the slopes |y′(σk)| and the upper and lower slopes
S∗[y], S∗[y] of oscillatory solutions y(t) of (1.2) on [0, ∞).

p(0)q(σk)
p(σk)2q(0)(q(0)α2 + p(0)β2) − q(σk)yp(σk)2

p(σk) ≤
(

y′(σk) + y′
p(σk)

)2
,

(
y′(σk) + y′

p(σk)
)2

≤ q(0)α2 + p(0)β2 − q(σk)yp(σk)2

p(σk)

if p′(t) ≥ 0 and q′(t) ≤ 0,

q(0)α2 + p(0)β2 − q(σk)yp(σk)2

p(σk) ≤
(

y′(σk) + y′
p(σk)

)2
,

(
y′(σk) + y′

p(σk)
)2

≤ p(0)q(σk)
p(σk)2q(0)(q(0)α2 + p(0)β2) − q(σk)yp(σk)2

p(σk)
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if p′(t) ≤ 0 and q′(t) ≥ 0,

p(0)
p(σk)2 (q(0)α2 + p(0)β2) − q(σk)yp(σk)2

p(σk) ≤
(

y′(σk) + y′
p(σk)

)2
,

(
y′(σk) + y′

p(σk)
)2

≤ q(σk)
p(σk)q(0)(q(0)α2 + p(0)β2) − q(σk)yp(σk)2

p(σk)

if (p(t)q(t))′ ≥ 0,

q(σk)
p(σk)q(0)(q(0)α2 + p(0)β2) − q(σk)yp(σk)2

p(σk) ≤
(

y′(σk) + y′
p(σk)

)2
,

(
y′(σk) + y′

p(σk)
)2

≤ p(0)
p(σk)2 (q(0)α2 + p(0)β2) − q(σk)yp(σk)2

p(σk)

if (p(t)q(t))′ ≤ 0. Letting k → ∞ in these inequalities, one can easily find sufficient
conditions in which the upper and lower slope S∗[y] and S∗[y] of the solution with
ensure S∗[y] < ∞ and S∗[y] > 0. Hence, we present the following result.

Theorem 3.2. Let (1.1) be oscillatory, the Wronskian W (yh, y) ̸= 0 and
(

f(t)
q(t)

)′
≤ 0

hold, and let y(t) be a solution of (1.2) on [0, ∞) satisfying (3.1).
(i) Suppose that p′(t) ≥ 0 and q′(t) ≤ 0 for t ≥ 0. If p(∞) < ∞, then

S∗[y] ≤
√

|q(0)α2 + p(0)β2 − q(∞)A[yp]2|
p(∞) − S[yp],

if p(∞) < ∞ and q(∞) > 0, then

S∗[y] ≥
√∣∣p(0)q(∞)(q(0)α2 + p(0)β2) − p(∞)q(0)q(∞)A[yp]2

∣∣
p(∞)2q(0) − S[yp].

(ii) Suppose that p′(t) ≤ 0 and q′(t) ≥ 0 for t ≥ 0. If p(∞) > 0 and q(∞) < ∞, then

S∗[y] ≤
√

|p(0)q(∞)(q(0)α2 + p(0)β2) − p(∞)q(0)q(∞)A[yp]2|
p(∞)2q(0) − S[yp],

S∗[y] ≥
√∣∣q(0)α2 + p(0)β2 − q(∞)A[yp]2

∣∣
p(∞) − S[yp].

(iii) Suppose that (p(t)q(t)) ≥ 0 for t ≥ 0. If p(∞) < ∞ and q(∞) < ∞, then

S∗[y] ≤
√

|q(∞)(q(0)α2 + p(0)β2 − q(0)q(∞)A[yp]2|
p(∞)q(0) − S[yp],

S∗[y] ≥
√∣∣p(0)(q(0)α2 + p(0)β2 − p(∞)q(∞)A[yp]2

∣∣
p(∞)2 − S[yp].
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(iv) Suppose that (p(t)q(t))′ ≤ 0 for t ≥ 0. If p(∞) > 0 and q(∞) > 0, then

S∗[y] ≤
√

|p(0)(q(0)α2 + p(0)β2 − p(∞)q(∞)A[yp]2|
p(∞)2 − S[yp],

S∗[y] ≥
√∣∣q(∞)(q(0)α2 + p(0)β2) − q(0)q(∞)A[yp]2

∣∣
p(∞)q(0) − S[yp].

The rest of this section, we shall discuss increase/decrease behavior about the se-
quences of zeros and extrema points of the function. Similar to Kusano and Yoshida [6],
we are interested in explicit laws or rules, if any governing the arrangement of these
sequences.

Lemma 3.3. Suppose that (1.1) is oscillatory. Let {σk} denote the sequence of zeros
of the function (y(t) − yp(t)), where y(t) is arbitrary solution and yp(t) is particular
solution of (1.2).

(i) The sequence {σk+1 − σk} is decreasing or increasing according to p′(t) ≤ 0 and
q′(t) ≥ 0, or p′(t) ≥ 0 and q′(t) ≤ 0.

(ii) Consider the case where p′(t) ≥ 0 and q′(t) ≥ 0 for t ≥ 0. Suppose that∫ ∞
0 dt/p(t) < ∞. Put π(t) =

∫ ∞
t

ds/p(s) and assume that π(t)2p(t) and
π(t)4p(t)q(t) are monotone for t ≥ 0. Then, the sequence {σk+1−σk} is decreasing
or increasing according to whether

(π(t)2p(t))′ ≤ 0 and (π(t)4p(t)q(t))′ ≥ 0 for t ≥ 0,

or
(π(t)2p(t))′ ≥ 0 and (π(t)4p(t)q(t))′ ≤ 0 for t ≥ 0.

Proof. For (i), the equation (1.2) reduces to
(

p(t)
(

y(t) − yp(t)
)′)′

+ q(t)
(

y(t) − yp(t)
)

= 0.

Putting yh(t) ≡ y(t) − yp(t), then yh(t) is a solution of (1.1). Applying the result of
Hille [5], we can show that (i) is true.

For the case (ii), the proof here is similar to that of Kusano and Yoshida [6], and
so is omitted.

Lemma 3.4. Suppose that (1.1) is oscillatory. Let {τk} denote the sequence of
extrema points of the function (y(t) − yp(t)), where y(t) is arbitrary solution and yp(t)
is particular solution of (1.2).

(i) The sequence {τk+1 − τk} is decreasing or increasing according to p′(t) ≤ 0 and
q′(t) ≥ 0, or p′(t) ≥ 0 and q′(t) ≤ 0.

(ii) Consider the case where p′(t) ≥ 0 and q′(t) ≥ 0 for t ≥ 0. Suppose that∫ ∞
0 dt/p(t) < ∞. Put ρ(t) =

∫ ∞
t

q(s)ds and assume that ρ(t)2/q(t) and
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ρ(t)4/p(t)q(t) are monotone for t ≥ 0. Then, the sequence {τk+1−τk} is decreasing
or increasing according to whether

(ρ(t)2p(t))′ ≤ 0 and (ρ(t)4p(t)q(t))′ ≥ 0 for t ≥ 0,

or
(ρ(t)2p(t))′ ≥ 0 and (ρ(t)4p(t)q(t))′ ≤ 0 for t ≥ 0.

Proof. The proof is similar to the proof of [6], so we omit it here.

Combining Theorem A with Lemma 3.3 or Theorem A with Lemma 3.4, respectively,
we state and prove the following results.

Theorem 3.5. Suppose that (1.1) is oscillatory and the Wronskian W (yh, y) ̸= 0. Let
{σk} denote the sequence of zeros of the solution y(t). Then y(t) satisfies Lemma 3.3
(i) and (ii).

Theorem 3.6. Suppose that (1.1) is oscillatory and the Wronskian W (yh, y) ̸= 0. Let
{τk} denote the sequence of extrema points of the solution y(t). Then y(t) satisfies
Lemma 3.4 (i) and (ii).

4. QUALITATIVE OSCILLATORY SOLUTIONS

Our aim in this section is to establish the existence and qualitative behavior of
oscillatory solutions of nonhomogeneous equation (1.2), that is, this chapter is an
attempt to obtain relations between large/small oscillatory solutions of (1.1) and
qualitative oscillatory solutions of (1.2). It is known that such solutions possibly exist
only if the coefficients p(t) and q(t) satisfy one of the following conditions:

(i) p′(t) ≥ 0, q′(t) ≤ 0, p(∞) = ∞ and/or q(∞) = 0,
(ii) p′(t) ≤ 0, q′(t) ≥ 0, p(∞) = 0 and/or q(∞) = ∞,
(iii) (p(t)q(t))′ ≥ 0, p(∞)q(∞) = ∞,
(iv) (p(t)q(t))′ ≤ 0, p(∞)q(∞) = 0.

Using of the results of Kusano and Yoshida [7] in Section 2 leads to following
theorems.

Lemma 4.1. Let equation (1.1) be oscillatory and yp(t) be particular solution of
(1.2). If (p(t)q(t))′ ≥ 0 [or ≤ 0] and p(∞)q(∞) = ∞ [or 0], then there exists a small
[or large] oscillatory function (y(t) − yp(t)).

Lemma 4.2. Let equation (1.1) be oscillatory and yp(t) be particular solution of (1.2).
Assume that p′(t) ≥ 0 and q′(t) ≤ 0. If p(∞) = ∞ [or < ∞] and q(∞) = ∞ [or < ∞],
then there exists a small [or large] oscillatory function (y(t) − yp(t)).

Lemma 4.3. Let equation (1.1) be oscillatory and yp(t) be particular solution of (1.2).
Assume that p′(t) ≤ 0 and q′(t) ≥ 0. If p(∞) > 0 [or = 0] and q(∞) > 0 [or = 0],
then there exists a small [or large] oscillatory function (y(t) − yp(t)).
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From the above result, the existence of such oscillatory function (y(t)−yp(t)) is not
in doubt, but the question is what it can be affected by force term f(t). Taking into
account Lemma 3.3 and Theorem 2.5, these question is answer by following results.
Accordingly, it will be able to describe the oscillatory behavior of solution y(t) of
nonhomogeneous equation (1.2).

Theorem 4.4. Let equation (1.1) be oscillatory and the Wronskian W (yh, y) ̸= 0.
If

(
f(t)
q(t)

)′
< 0, and one of the following condition hold:

(a) (p(t)q(t))′ ≥ 0 and p(∞)q(∞) = ∞,
(b) p′(t) ≥ 0, q′(t) ≤ 0 and p(∞) = ∞, q(∞) > 0,
(c) p′(t) ≤ 0, q′(t) ≥ 0 and p(∞) > 0, q(∞) = ∞,

then y(t) is a small oscillation of equation (1.2).

Theorem 4.5. Let equation (1.1) be oscillatory and the Wronskian W (yh, y) ̸= 0.
If one of the following condition hold:

(a) (p(t)q(t))′ ≤ 0 and p(∞)q(∞) = 0,
(b) p′(t) ≥ 0, q′(t) ≤ 0 and p(∞) < ∞, q(∞) = 0,
(c) p′(t) ≤ 0, q′(t) ≥ 0 and p(∞) = 0, q(∞) < ∞,

then y(t) is a large oscillation of equation (1.2).

5. EXAMPLES

We illustrate the applicability and efficiency of the results via the following examples.

Example 5.1. Consider the equation
(

1
2 − e−t

y′(t)
)′

+ (2 − e−t)y(t) = 2 − e−t (5.1)

on [0, ∞). Since (1.3), |yp(t)| < ∞ and the Wronskian:

W (yh, y) = k + 1 − cos (2t + e−t − 1) ̸= 0

hold, then (5.1) is clearly oscillatory. Note that p′(t) ≤ 0, q′(t) ≥ 0 and (p(t)q(t))′ = 0.
Let y(t) be a solution of (5.1) on [0, ∞) satisfying the initial condition (3.1). It is easy
to check that p(∞) > 0, q(∞) < ∞ and yp(t) is bounded. Then (ii) of Theorem 3.1
applies and gives

A∗[y] ≤
√

2(α2 + β2) + 2, A∗[y] ≥
√

α2 + β2

2 .

It follows that all solutions of (5.1) are moderately bounded, which can be shown that

y(t) = sin (2t + e−t − 1) − cos (2t + e−t − 1) + 1.
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Example 5.2. Consider the equation
(
ety′(t)

)′ + e3ty(t) = e2t (5.2)

on [0, ∞). It is easy to compute that (1.4), |yp(t)| < ∞ and the Wronskian:

W (yh, y) = k + cos 1 − cos et ̸= 0

hold. Hence, we observe that (5.2) is oscillatory. Corollary 2.4 is not applicable to (5.2)
due to satisfying (p(t)f(t))′ ≥ 0. Since (p(t)q(t))′ ≥ 0, p(∞)q(∞) = ∞, Theorem 4.4
means that there exists a small oscillatory solution

y(t) = e−t{(1 − sin (1)) sin et − cos (1) cos et + 1}.

Example 5.3. Consider the equation
(
t−1y′(t)

)′ + 4ty(t) = t cos t2 (5.3)

on [0, ∞). It easy to check that this equation is oscillatory and satisfy (1.3), |yp(t)| < ∞
and the Wronskian:

W (yh, y) = k + 1
4 sin2 t2 ̸= 0.

Since p′(t) ≤ 0, q′(t) ≥ 0 and |yp(∞)| = |y′
p(∞)| = ∞, Theorem 4.5 implies that (5.3)

has a large oscillatory solution

y(t) = cos t2 + t2

8 sin t2.

Example 5.4. Consider the equation
(√

ty′(t)
)′

+ 1
4
√

t
y(t) = 1√

t
cos

√
t (5.4)

on [0, ∞). It easy to verify that this equation is oscillatory, which satisfy (1.3) and the
Wronskian:

W (yh, y) = k + sin2 √
t ̸= 0.

Since p′(t) ≤ 0, q′(t) ≥ 0 and |yp(∞)| = |y′
p(∞)| = ∞, Theorem 4.5 immediately

implies that (5.4) has a large oscillatory solution

y(t) = cos
√

t + 2
√

t sin
√

t.
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