PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dual Second Order Generalized Integrator – Phase Locked Loop technique applied to a distorted grid-connected solar energy based on a Z-Source Inverter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a Dual Second Order Generalized Integrator_Phase Locked Loop (DSOGI_PLL) technique applied to the Photovoltaic (PV) system supplying a Z-Source five-level Inverter (ZSI) is presented. The ZSI assures the increasing voltage of the PV system and provides the desired output DC at the input of the five-level Neutral Point Clamped Inverter (5L_NPCI), without any control which reduces the complexity of the overall system, this is due to the impedance network in its structure. We use Z-Source in order to eliminate the controlled DC bus as well as the use of the DC-DC Boost converter as an intermediary. A DSOGI technique is employed to control and optimize the energy quality, especially in distorted grid conditions and allows one to obtain a very low value of Total Harmonic Distortion (THD) which means lower peak currents, and higher efficiency. Low THD is an essential feature in power systems that international standards such as IEC 61000-3-2, and IEEE-519 set limits on the harmonic currents of various classes of power equipment connected to a distorted three-phase grid. Compared to the classic structure of inverters, the NPC five-level inverter presents a very high performance.
Rocznik
Strony
595--614
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Département d’électrotechnique, laboratoire d’électrotechnique de Constantine, Université Constantine 1, 25000 Constantine, Algeria
  • Département d’électrotechnique, laboratoire d’électrotechnique de Constantine, Université Constantine 1, 25000 Constantine, Algeria
autor
  • Département d’électrotechnique, laboratoire d’électrotechnique de Constantine, Université Constantine 1, 25000 Constantine, Algeria
Bibliografia
  • [1] Babu B.C., Gurjar S., A novel simplified two-diode model of photovoltaic (PV) module, IEEE Journal of Photovoltaics, vol. 4, no. 4, pp. 1156–1161 (2014), DOI: 10.1109/JPHOTOV.2014.2316371.
  • [2] Won C.Y., Kim D.H., Kim S.C., Kim W.S., Kim H.S., A new maximum power point tracker of photovoltaic arrays using fuzzy controller, in Proceedings of 1994 Power Electronics Specialist Conference-PESC’94, vol. 1, pp. 396–403 (1994), DOI: 10.1109/PESC.1994.349703.
  • [3] Ding R., Feng C., Wang D., Sun R., Wang L., Yuan S., Trade based on alliance chain in energy from distributed photovoltaic grids, Archives of Electrical Engineering, vol. 70, no. 2 (2021), DOI: 10.24425/aee.2021.136987.
  • [4] Naick B.K., Chatterjee K., Chatterjee T., Fuzzy logic controller based maximum power point tracking technique for different configurations of partially shaded photovoltaic system, Archives of Electrical Engineering, vol. 67, no. 2, pp. 307–320 (2018), DOI: 10.24425/119642.
  • [5] Sezen S., Aktas A., Ucar M., Ozdemir E., A three-phase three-level NPC inverter based grid-connected photovoltaic system with active power filtering, in 2014 16th International Power Electronics and Motion Control Conference and Exposition, pp. 1331–1335 (2014), DOI: 10.1109/EPEPEMC.2014.6980697.
  • [6] Gao F., Loh P., Blaabjerg F., Teodorescu R., Vilathgamuwa D., Five-Level Z-Source Neutral Point-Clamped Inverter, in IEEE Power Electronics and Drive Systems, PEDS 2007: Electrical Engineering/Electronics, Computer, Communications and Information, pp. 1054–1061 (2007), DOI: 10.1109/PEDS.2007.4487834.
  • [7] Chandrashekhar T., Veerachary M., Control of single-phase Z-source inverter for a grid connected system, in 2009 International Conference on Power Systems, pp. 1–6 (2009), DOI: 10.1109/ICPWS.2009.5442687.
  • [8] Dehghan S., Seifi E., Mohamadian M., Gharehkhani R., Grid connected DG systems based on Z-source NPC inverters, in 2011 2nd Power Electronics, Drive Systems and Technologies Conference, pp. 104–110 (2010), DOI: 10.1109/PEDSTC.2011.5742399.
  • [9] Mali R., Adam N., Satpaise A., Vaidya A., Performance comparison of two level inverter with classical multilevel inverter topologies, in 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–7 (2019), DOI: 10.1109/ICECCT.2019.8869115.
  • [10] Tian H., Mancilla-David F., Ellis K., Muljadi E., Jenkins P., A cell-to-module-to-array detailed model for photovoltaic panels, Solar energy, vol. 86, no. 9, pp. 2695–2706 (2012), DOI: 10.1016/j.solener.2012.06.004.
  • [11] Madeti S.R., Singh S., Modeling of PV system based on experimental data for fault detection using kNN method, Solar Energy, vol. 173, pp. 139–151 (2018), DOI: 10.1016/j.solener.2018.07.038.
  • [12] Kouhanjani M.J., Soltani S., Mardaneh M., Generalized state space model and small signal stability analysis of Z-source converter, Archives of Electrical Engineering, vol. 72, no. 1 (2023), DOI: 10.24425/aee.2023.143696.
  • [13] Samanbakhsh R., Koohi P., Ibanez F.M., Martin F., Terzija V., A Z-source inverter with switched network in the grid-connected applications, International Journal of Electrical Power & Energy Systems, vol. 147, 108819 (2023), DOI: 10.1016/j.ijepes.2022.108819.
  • [14] Wang K., Zheng Z., Xu L., Li Y., Neutral-point voltage balancing method for five-level NPC inverters based on carrier-overlapped PWM, IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 1428–1440 (2020), DOI: 10.1109/TPEL.2020.3006960.
  • [15] Luo S., Wu F., Zhao K., Modified single-carrier multilevel SPWM and online efficiency enhancement for single-phase asymmetrical NPC grid-connected inverter, IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3157–3167 (2019), DOI: 10.1109/TII.2019.2906248.
  • [16] Ravi A., Manoharan P., Anand J.V., Modeling and simulation of three phase multilevel inverter for grid connected photovoltaic systems, Solar Energy, vol. 85, no. 11, pp. 2811–2818 (2011), DOI: 10.1016/j.solener.2011.08.020.
  • [17] Güler N., Irmak E., MPPT based model predictive control of grid connected inverter for PV systems, in 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA) (2019), pp. 982–986, DOI: 10.1109/ICRERA47325.2019.8997105.
  • [18] Lokesh N., Mishra M.K., A comparative performance study of advanced PLLs for grid synchronization, in 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), pp. 1–6 (2020), DOI: 10.1109/PESGRE45664.2020.9070288.
  • [19] Izah R., Subiyanto S., Prastiyanto D., Improvement of DSOGI PLL Synchronization Algorithm with Filter on Three-Phase Grid-connected Photovoltaic System, Jurnal Elektronika dan Telekomunikasi, vol. 18, no. 1, pp. 35–45 (2018), DOI: 10.14203/jet.v18.35-45.
  • [20] Blanco C., Reigosa D., Briz F., Guerrero J.M., García P., Grid synchronization of three-phase converters using cascaded complex vector filter PLL, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 196–203 (2012), DOI: 10.1109/ECCE.2012.6342823.
  • [21] Mondal B., Karuppaswamy B.A., A New Approach to Fourth-Order Quadrature Signal Generation for a Fast and Noise-Free PLL Output Under Non-Ideal Grid Voltage Conditions, IEEE Access, vol. 10, pp. 38472–38482 (2022), DOI: 10.1109/ACCESS.2022.3165561.
  • [22] Akbari Ehsan, Zishan Farhad, Modified Topology and Modulation Technique for Z-Source Neutral-Point Clamped Inverter, Power Electronics and Drives, vol. 7, pp. 210–226, 10.2478/pead-2022-0016 (2022), DOI: 10.2478/pead-2022-0016.
  • [23] Baek Jaeil, Elasser Youssef, Chen Minjie, MIPS: Multiphase Integrated Planar Symmetric Coupled Inductor for Ultrathin VRM, IEEE Transactions on Power Electronics, vol. 38, no. 5, pp. 5609–5614 (2023), DOI: 10.1109/TPEL.2023.3236152.
  • [24] Jin N., Fan W., Fang J., Wu J., Shen Y., Current ripple reduction for finite control set model predictive control strategy of grid-tied inverter with reference current compensation, Archives of Electrical Engineering, pp. 5–22 (2023), DOI: 10.24425/aee.2023.143687.
  • [25] Ke Shanwen, Yuren Li, Analysis and modelling of a phase-locked loop based on a novel cascade structure of SOGI, IET Power Electronics, vol. 16, pp. 2549–2559 (2023), DOI: 10.1049/pel2.12581.
  • [26] Khan R.A., Liu H.-D., Lin C.-H., Lu S.-D., Yang S.-J., Sarwar A., A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems, Processes, vol. 11, no. 4, 1087 (2023), DOI: 10.3390/pr11041087.
  • [27] Soumana R.A., Saulo M.J., Muriithi C.M., New control strategy for multifunctional grid-connected photovoltaic systems, Results in Engineering, vol. 14, 100422 (2022), DOI: 10.1016/j.rineng.2022.10
  • [28] Zhang Y., Li F., Zhang L., Wen S., Ma M., Zhang X., Modeling and frequency characteristic analysis of DSOGI-PLL in dq reference frame, Energy Reports, vol. 7, pp. 545–551 (2021), DOI: 10.1016/j.egyr.2021.08.007.
  • [29] Pinto J., Carvalho A., Rocha A., Araújo A., Comparison of DSOGI-based PLL for phase estimation in three-phase weak grids, Electricity, vol. 2, no. 3, pp. 244–270 (2021), DOI: 10.3390/electricity2030015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22f12fdc-f135-42ee-aa37-9539ccbd7fba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.