PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical Study of the Distance Change on IEEE 802.11ah Standard using Markov Chain Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research proposed a model of Enhanced Distributed Channel Access (EDCA) scheme which is one of the techniques used in reducing collision and usually prioritized due to its contention window to determine the impact of distance change on the IEEE 802.11 ah standard. The proposed model was analyzed using the Markov Chain approach to determine the effect of distance change on collisions levels while the numerical were simulated using MATLAB. Moreover, the Markov chain solution was used to evaluate parameters such as throughput, energy consumption, and delay. The results showed the increment in RAW slot duration and the distance change for each station can reduce the performance on the standard and the scenario when the RAW slot duration was changed by 50 ms performed better than 100 ms and 250 ms.
Rocznik
Strony
745--749
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Telkom University, Indonesia
  • Telkom University, Indonesia
  • Telkom University, Indonesia
  • Telkom University, Indonesia
Bibliografia
  • [1] E. Khowov et al, “Enabling the IoT with Wi-Fi HaLow - Performance Evaluation of Restricted Access Window,” IEEE Access, vol. 4, 2016.
  • [2] D. Perdana, S. Hafidzah, and B. Erfianto, “Analytical Study on IEEE 802.11ah Standard Impact of Hidden Node,” Int. J. of Intelligent and Systems, vol. 14, no. 3, pp. 139-147, 2021.
  • [3] R. N. A. Muktiarto, D. Perdana, and R. M. Negara, “Performance analysis of mobility impact on IEEE 802.11ah standard with traffic pattern scheme,” Int. J. Secure, vol. 10, no. 1, pp. 139-147, 2018.
  • [4] S. Prasetya, B. Rahmat, and E. Susanto, “Quality of service improvement with 802.11 e EDCA scheme using enhanced adaptive contention window algorithm,” in 2015 IEEE International Conference on Communication, Networks and Satellite (COMNESTAT), pp. 80-85, 2015. https://doi.org/10.1109/COMNETSAT.2015.7434292
  • [5] A. Oktaviana, D. Perdana, and R. M. Negara, “Performance Analysis on IEEE 802.11ah Standard with Enhanced Distributed Channel Access Mechanism,” CommIT (Communication and Information Technology) Journal, vol. 12, no. 1, pp. 35, 2018. https://doi.org/10.21512/commit.v12i1.3908
  • [6] M. Krajčí, “Markov chain algorithms for canonical ensemble simulation,” Computer Physics Communications, vol. 42, no. 1, pp. 29-35, 1986. https://doi.org/10.1016/0010-4655(86)90227-4
  • [7] M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Computer Physics Communications, vol. 182, no. 2, pp. 400-408, 2011. https://doi.org/10.1016/j.cpc.2010.09.017
  • [8] D. Mani and A. Mahendran, “Availability Modelling of Fault Tolerant Cloud Computing System,” International Journal of Intelligent Engineering and Systems, vol. 10, no. 1, pp. 154-165, 2017.
  • [9] Y. Wang, K. K. Chai, Y. Chen, J. Schormans, “Energy Efficient Window Control Scheme for IEEE 802.11ah (Wi-Fi HaLow) Based Networks,” J. of Electrical Engineering, vol. 5, no. 5, 2017. https://doi.org/10.17265/2328-2223/2017.05.003
  • [10] L. Tian, S. Deronne, S. Latré, and J. Famaey, “Implementation and Validation of an IEEE 802.11ah Module for ns-3,” in Proceedings of the Workshop on ns-3 - WNS3 ’16, pp. 49-56, 2016. https://doi.org/10.1145/2915371.2915372
  • [11] R. F. Malik and I. Mustofa, “Separated Operation State pada Medium Access Control di Jaringan IEEE 802.11ac,” Transmisi: Jurnal Ilmiah Teknik Elektro, vol. 21, no. 2, pp. 43-50, 2019.
  • [12] M. Qutab-ud-din, “Enhancements and Challenges In IEEE 802.11 ah-A Sub-Gigahertz Wi-Fi For IoT Applications,” 2015.
  • [13] A. Thalengala, H. Anitha, and T. Girisha, “Effect of time-domain windowing on isolated speech recognition system performance,” International Journal of Electronics and Telecommunications, pp. 161-166, 2022.
  • [14] R. Hoffmann, “Markov Model of Cyber Attack Life Cycle Triggered by Software Vulnerability,” International Journal of Electronics and Telecommunications, pp. 67, 2021.
  • [15] P. C. Jain and S. Taneeru, “Performance Evaluation of IEEE 802.11ah Protocol in Wireless Area Network,” in 2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), pp. 578-583, 2016. https://doi.org/10.1109/ICMETE.2016.23
  • [16] S. G. Yoon, J. O. Seo, and S. Bahk, “Regrouping algorithm to alle- viate the hidden node problem in 802.11ah networks,” Computer Networks, vol. 105, pp. 22-32, 2016.
  • [17] L. Xin and D. Starobinski, “Mitigation of cascading denial of service attacks on Wi-Fi networks,” in 2018 IEEE Conference on Communications and Network Security (CNS), pp. 1-9 2018.
  • [18] A. Sljivo et al., “Performance evaluation of IEEE 802.11 ah networks with high-throughput bidirectional traffic,” Sensors, vol. 18, no. 2, p. 325, 2018.
  • [19] B. Rajkumar and G. Narsimha, “Secure Light Weight Encryption Protocol for MANET,” International Journal of Intelligent Engineering and Systems, vol. 10, no. 3, pp. 58-65, 2017. https://doi.org/10.22266/ijies2017.0630.07
  • [20] IEEE 802 LAN/MAN Standards Committee and others, “IEEE Standard for Information technology-Telecommunication and information exchange between systems-Local and metropolitan area networks-Specific requirements Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment1: Radio Resource Measurement of Wireless LANs,” ieee std 802.11ahTM-2016, 2016.
  • [21] J. C. Araiza Leon, “Evaluation of IEEE 802.11 ah Technology for Wireless Sensor Network Applications,” 2015.
  • [22] A. Abu-Khadrah, Z. Zakaria, M. Othman, and M. S. I. M. Zin, “Using Markov Chain Model to Evaluate the Performance of EDCA Protocol Under Saturation and Non-Saturation Conditions,” International Review on Computers and Software (IRECOS), vol. 10, no. 3, pp. 315, 2015. https://doi.org/10.15866/irecos.v10i3.5700
  • [23] X. Li and W. F. Northrop, “A Markov Chain-based quantitative study of angular distribution of photons through turbid slabs via isotropic light scattering,” Computer Physics Communications, vol. 201, pp. 77-84, 2016. https://doi.org/10.1016/j.cpc.2015.12.020
  • [24] M. Sheng, J.-D. Li, and Y. Shi, “Performance Analysis of IEEE802. 11 under Distribution Coordination Function,” ACTA ELECTONICA SINICA, vol. 32, no. S1, pp. 148, 2004.
  • [25] S. Ray, D. Starobinski, and J. B. Carruthers, “Performance of wireless networks with hidden nodes: a queuing-theoretic analysis,” Computer Communications, vol. 28, no. 10, pp. 1179-1192, 2005. https://doi.org/10.1016/j.comcom.2004.07.024
  • [26] L. Xin, D. Starobinski, and G. Noubir, “Cascading denial of service attacks on Wi-Fi networks,” in 2016 IEEE Conference on Communications and Network Security (CNS), pp. 91-99, 2016.
  • [27] Q. T. Ngo, D. N. Minh Dang, Q. Le-Trung, and D. K. Lam, “A Novel Directional MAC in Restricted Access Window for IEEE 802.11ah Networks,” in 2019 26th International Conference on Telecommunications (ICT), pp. 167-171, 2019. https://doi.org/10.1109/ICT.2019.8798775
  • [28] P. Zhong, J. Shi, Y. Zhuang, H. Chen, and X. Hong, “A Generalized Markov Chain Model for IEEE 802.11 Distributed Coordination Function,” KSII Transactions on Internet and Information Systems (TIIS), vol. 6, no. 2, pp. 664-682, 2012.
  • [29] C. E. Weng and H. C. Chen, “The performance evaluation of IEEE 802.11 DCF using Markov chain model for wireless LANs,” Computer Standards & Interfaces, vol. 44, pp. 144-149, 2016. https://doi.org/10.1016/j.csi.2015.09.002
  • [30] M. Shafiq et al., “Multiple Access Control for Cognitive Radio-Based IEEE 802.11ah Networks,” Sensors, vol. 18, no. 7, pp. 2043, 2018. https://doi.org/10.3390/s18072043
  • [31] S. M. Soares and M. M. Carvalho, “Throughput Analytical Modeling of IEEE 802.11ah Wireless Networks,” in 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1-4, 2019. https://doi.org/10.1109/CCNC.2019.8651805
  • [32] L. M. Feeney and M. Nilsson, “Investigating the energy consumption of a wireless network interface in an ad hoc networking environment,” in Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No. 01CH37213), pp. 1548-1557, 2001.
  • [33] S. Fadilah, A. Shibghatullah, Z. Abas, M. Abd Wahab, M. Helmy, and W. Hashim, “Performance Analysis for Wireless G (IEEE 802.11G) and Wireless N (IEEE 802.11N) in Outdoor Environment,” ARPN Journal Engineering and Applied Sciences, vol. 9, pp. 1725-1731, 2014.
  • [34] M. Elkotob and K. Andersson, “Analysis and measurement of session setup delay and jitter in VoWLAN using composite metrics,” in Proceedings of the 7th International Conference on Mobile and Ubiquitous Multimedia, pp. 190-197, 2008.
  • [35] O. Raeesi, J. Pirskanen, A. Hazmi, T. Levanen, and M. Valkama, “Performance evaluation of IEEE 802.11ah and its restricted access window mechanism,” in 2014 IEEE International Conference on Communications Workshops (ICC), pp. 460-466, 2014. https://doi.org/10.1109/ICCW.2014.6881241
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22e4199f-41c2-49cb-903d-48e5928d426e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.