PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault diagnosis algorithm of electric vehicle gearbox based on SDEA-Bi GRU

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper suggests a hybrid method that combines the strengths of a bidirectional gated recurrent unit with a stacked denoising autoencoder to enhance the precision and effectiveness of diagnosing transmission faults in electric vehicles. The bidirectional gated recurrent unit makes advantage of these deep features for efficient fault pattern identification and classification. The results revealed that the hybrid algorithm had the best feature extraction ability for gear fault signals, and the signal features extracted by the algorithm were more concentrated and crossed each other less. The neurons in the hidden layer of the stacked denoising autoencoder was 180, and the number of neurons in the bidirectional gated recurrent unit was 160, and the hybrid algorithm performed best when the neurons in the hidden layer was 180 and the neurons in the bidirectional gated recurrent unit was 160. The hybrid algorithm performed best when the number of neurons was 160. The hybrid algorithm had the highest diagnostic accuracy for the faults, with the highest diagnostic accuracy of 97.98% in the balanced samples and 94.86% in the unbalanced samples. The hybrid algorithm constructed in the study effectively improves the diagnostic accuracy of transmission gear faults in electric vehicles.
Słowa kluczowe
Czasopismo
Rocznik
Strony
art. no. 2024215
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • College of Intelligent Engineering Technology, Jiangsu Vocational College of Finance & Economics, Huaian 223003, China
autor
  • College of Intelligent Engineering Technology, Jiangsu Vocational College of Finance & Economics, Huaian 223003, China
Bibliografia
  • 1. Wang Z, Song C, Zhang L, Zhao Y, Liu P, Dorrell D G. A data-driven method for battery charging capacity abnormality diagnosis in electric vehicle applications. IEEE Transactions on Transportation Electrification 2021; 8(1): 990-999. https://doi.org/10.1109/TTE.2021.3117841.
  • 2. Kong W, Luo Y, Qin Z, Qi Y, Lian X. Comprehensive fault diagnosis and fault-tolerant protection of invehicle intelligent electric power supply network. IEEE Transactions on Vehicular Technology 2019; 68(11): 10453-10464. https://doi.org/10.1109/TVT.2019.2921784.
  • 3. Abdelli K, Grießer H, Tropschug C, Pachnicke S. Optical fiber fault detection and localization in a noisy OTDR trace based on denoising convolutional autoencoder and bidirectional long short-term memory. Journal of Lightwave Technology 2022; 40(8): 2254-2264. https://doi.org/10.48550/arXiv.2203.12604.
  • 4. Wang Z, Song C, Zhang L, Zhao Y, Liu P, Dorrell D G. A data-driven method for battery charging capacity abnormality diagnosis in electric vehicle applications. IEEE Transactions on Transportation Electrification 2021; 8(1): 990-999. https://doi.org/10.1109/TTE.2021.3117841.
  • 5. Li D, Zhang Z, Liu P, Wang Z, Zhang L. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model. IEEE Transactions on Power Electronics 2020; 36(2): 1303-1315. https://doi.org/10.1109/TPEL.2020.3008194.
  • 6. Gan N, Sun Z, Zhang Z, Xu S, Liu P, Qin Z. Datadriven fault diagnosis of lithium-ion battery overdischarge in electric vehicles. IEEE Transactions on Power Electronics 2021; 37(4): 4575-4588. https://doi.org/10.1109/TPEL.2021.3121701.
  • 7. Wang X, Lu S, Chen K, Wang Q, Zhang S. Bearing fault diagnosis of switched reluctance motor in electric vehicle powertrain via multisensor data fusion. IEEE Transactions on Industrial Informatics 2021; 18(4): 2452-2464. https://doi.org/10.1109/TII.2021.3095086.
  • 8. Long R, Yu Q, Shen W, Lin C, Sun F. A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles. IEEE Transactions on Power Electronics 2019; 34(10): 9709-9718. https://doi.org/10.1109/TPEL.2019.2893622.
  • 9. Deng F, Bian Y, Zheng H. Fault diagnosis for electric vehicle lithium batteries using a multi-classification support vector machine. Electrical Engineering 2022; 104(3): 1831-1837. https://doi.org/10.1007/s00202-021-01426-y.
  • 10. Jia N, Cheng Y, Liu Y, Tian Y. Intelligent fault diagnosis of rotating machines based on wavelet timefrequency diagram and optimized stacked denoising auto-encoder. IEEE Sensors Journal 2022; 22(17): 17139-17150. https://doi.org/10.1109/JSEN.2022.3193943.
  • 11. Che C, Wang H, Ni X, Fu Q. Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network. Industrial Lubrication and Tribology 2020; 72(7): 947-953. https://doi.org/10.1108/ILT-11-2019-0496.
  • 12. Fu B, Yuan W, Cui X, Yu T, Zhao X, Li C. Correlation analysis and augmentation of samples for a bidirectional gate recurrent unit network for the remaining useful life prediction of bearings. IEEE sensors journal 2020; 21(6): 7989-8001. https://doi.org/10.1109/JSEN.2020.3046653.
  • 13. Liu H, Liu Z, Jia W, Zhang D, Tan J. A novel imbalanced data classification method based on weakly supervised learning for fault diagnosis. IEEE Transactions on Industrial Informatics 2021; 18(3): 1583-1593. https://doi.org/10.1109/TII.2021.3084132.
  • 14. Pal S, Roy A, Shivakumara P, Pal U. Adapting a Swin Transformer for License Plate Number and Text Detection in Drone Images. Artificial Intelligence and Applications 2023; 1(3): 145-154. http://dx.doi.org/10.47852/bonviewAIA3202549.
  • 15. Wang T, Luo H, Zeng X, Yu Z, Liu A, Sangaiah A K. Mobility based trust evaluation for heterogeneous electric vehicles network in smart cities. IEEE Transactions on Intelligent Transportation Systems 2020; 22(3): 1797-1806. https://doi.org/10.1109/TITS.2020.2997377.
  • 16. Liu C, Chau K T, Lee CHT, Song Z. A critical review of advanced electric machines and control strategies for electric vehicles. Proceedings of the IEEE 2020; 109(6): 1004-1028. https://doi.org/10.1109/JPROC.2020.3041417.
  • 17. Yang D, Pang Y, Zhou B, Li K. Fault diagnosis for energy internet using correlation processing-based convolutional neural networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2019; 49(8): 1739-1748. https://doi.org/10.1109/TSMC.2019.2919940.
  • 18. Dhaya DR, Kanthavel DR. A wireless collision detection on transmission poles through IoT technology. Journal of Trends in Computer Science and Smart Technology 2020; 2(3): 165-172. http://dx.doi.org/10.36548/jtcsst.2020.3.006.
  • 19. Racewicz S, Kazimierczuk P, Kolator B, Olszewski A. Use of 3 kW BLDC motor for light two-wheeled electric vehicle construction, IOP Conference Series: Materials Science and Engineering, 2018;421:042067. https://iopscience.iop.org/article/10.1088/1757-899X/421/4/042067.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22e2d6c8-8999-407d-88de-44408a80dbb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.