PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of additive effect on anaerobic sewage sludge digestion

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena addytywnego wpływu na proces beztlenowej fermentacji osadów ściekowych
Języki publikacji
EN
Abstrakty
EN
An additive based on iron oxides was applied to reduce the amount of produced sludge and to increase the production and quality of biogas. The C/N ratio was 11.0–11.3 and the pH of the sludge mixture was 7.3 before the anaerobic digestion. The determined optimal dose of the additive was 0.35 g/g of sludge dry matter over 20 days. This allowed a reduction in the sludge retention time up to 6–11 days. Consequently, maximum biogas production was reached on average 1.6 times faster, volatile solids degradation increased by 56.7%, biogas production increased by 75%, specific biogas production increased by 11.5%, and methane concentration in the biogas increased by 8.4%–18.2%. When the additive was applied, the quantity of phosphate phosphorus in the supernatant was reduced by up to 19%, and hydrogen sulfide reduction efficiency in the biogas ranged between 55% and 62%. In sludge treatment facilities, using an iron oxide-based additive could reduce the dewatering and drying costs for digested sludge by up to 35% .
PL
Zastosowano dodatek na bazie tlenków żelaza, aby zmniejszyć ilość wytwarzanego osadu i zwiększyć zarówno produkcję, jak i jakość biogazu. Stosunek C/N przed fermentacją beztlenową wynosił 11,0–11,3, a pH kombinacji osadów wynosiło 7,3. Ustalona stosowana dawka dodatku wynosiła 0,35 g/g suchej masy osadu w okresie 20 dni. Pozwoliło to na skrócenie czasu retencji osadu do 6–11 dni, tj. mi. maksymalną produkcję biogazu osiągano średnio 1,6 razy szybciej. Test laboratoryjny przeprowadzono w VILNIUS TECH przy użyciu modelu fermentacji beztlenowej „W8 Armfield Ltd” (Wielka Brytania). Do badań wykorzystano dodatek na bazie tlenków żelaza. Dokonano pomiarów parametrów osadu i biogazu. Po dodaniu dodatku ilość lotnych substancji stałych ulegających rozkładowi wzrosła o 56,7%, ilość wyprodukowanego biogazu wzrosła o 75%, stężenie specyficznego wyprodukowanego biogazu wzrosło o 11,5%, a stężenie metanu w biogazie wzrosło o 8,4% do 18,2%. Po przefermentowaniu osadu z dodatkiem ilość fosforu fosforanowego w supernatancie zmniejszyła się aż o 19%, a skuteczność redukcji siarkowodoru w biogazie wynosiła od 55 do 62%. Koszt odwadniania i suszenia osadu przefermentowanego można obniżyć nawet o 35% w oczyszczalniach osadów, w których stosuje się dodatek na bazie tlenków żelaza.
Rocznik
Strony
82--92
Opis fizyczny
Bibliogr. 45 poz., tab., wykr.
Twórcy
  • Vilnius TECH, Lithuania
  • Vilnius TECH, Lithuania
  • Vilnius TECH, Lithuania
Bibliografia
  • 1. Agani, G. C., Suanon, F., Dimon, B., Ifon, E. B., Yovo, F., Wotto, V. D., Abass, O. K. & Kumwimba, M. N. (2017). Enhancement of fecal sludge conversion into biogas using iron powder during anaerobic digestion process, American Journal of Environmental Protection, pp. 179-186, DOI:10.11648/j.ajep.20160506.15
  • 2. Al Mamun, M.R. & Torii, S. (2015). Removal of Hydrogen Sulfide (H2S) from Biogas Using Zero-Valent Iron, Journal of Clean Energy Technologies, 6, pp. 428-432, DOI:10.7763/JOCET.2015.V3.236
  • 3. Andriamanohiarisoamanana, F.J., Shirai, T., Yamashiro, T., Yasui, S., Iwasaki, M., Ihara, I., Nishida, T., Tangtaweewipat, S. & Umetsu, K. (2018). Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances, Journal of Environmental Management, 208, pp. 134-141, DOI:10.1016/j.jenvman.2017.12.012
  • 4. ATV-DVWK. ATV-DVWK Standards A 131E. (2000). Dimensioning of Single-Stage Activated Sludge Plants, ATV-DVWK, Water, Wastewater, Waste, Hennef, Germany.
  • 5. Berenjkar, P., Islam, M. & Yuan, Q. (2018). Co-treatment of sewage sludge and mature landfill leachate by anaerobic digestion, International Journal of Environmental Science and Technology, 5, pp. 2465-2474, DOI:10.1007/s13762-018-1889-2
  • 6. Bizimana, A., Wu, B. & Idriss, A.A. (2021). Analysis of Adapted Sewage Sludge Treatment and Disposal Routes in Bujumbura, Burundi, Open Access Library Journal, 04, pp. 1-23, DOI:10.1007/s11157-011-9244-9
  • 7. Buta, M., Hubeny, J., Zieliński, W., Harnisz, M. & Korzeniewska, E. (2021). Sewage sludge in agriculture - the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops - a review, Ecotoxicology and Environmental Safety, 214, 112070, DOI:10.1016/j.ecoenv.2021.112070
  • 8. Cheng, J., Zhu, C., Zhu, J., Jing, X., Kong, F. & Zhang, C. (2020). Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge, Journal of Cleaner Production, 242, p. 118-195, DOI:10.1016/j.jclepro.2019.118195
  • 9. Dauknys, R., Mažeikienė, A. & Paliulis, D. (2020). Effect of ultrasound and high voltage disintegration on sludge digestion process, Journal of Environmental Management, 270, 110833, DOI:10.1016/j.jenvman.2020.110833
  • 10. Fang, L., Li, J., Guo, M.Z., Cheeseman, C.R., Tsang, D.C.W., Donatello, S. & Poon, C.S. (2018). Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA), Chemosphere, 193, pp. 278-287, DOI:10.1016/j.chemosphere.2017.11.023
  • 11. Farghali, M.; Andriamanohiarisoamanana, F. J.; Ahmed, M. M.; Kotb, S.; Yamamoto, Y.; Iwasaki, M.; Yamashiro, T. & Umetsu, K. (2020). Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles, Waste Management, 101, pp. 141-149. DOI:10.1016/J.WASMAN.2019.10.003
  • 12. Filer, J., Ding, H.H. & Chang, S. (2019). Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research, Water, 5, 921. DOI:10.3390/w11050921
  • 13. Górka, J. Ł. & Cimochowicz-Rybicka, M. (2019). Water and sewage sludge co-digestion: characteristic of the process and its possible applications. Archives of Environmental Protection, 1, pp. 29-42. DOI:10.2478/aep-2014-0030
  • 14. Hallaji, S.M., Kuroshkarim, M. & Moussavi, S.P. (2019). Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey, BMC Biotechnology, 19, pp. 1-10. DOI:10.1186/s12896-019-0513-y
  • 15. Hao, X., Wei, J., van Loosdrecht M. C. M. & Cao, D. (2017). Analysing the mechanisms of sludge digestion enhanced by iron, Water Research, 117, pp. 58-67. DOI:10.1016/j.watres.2017.03.048
  • 16. Hoang, S. A., Bolan, N., Madhubashani, A. M. P., Vithanage, M., Perera, V., Wijesekara, H., Wang, H., Srivastava, P., Kirkham, M. B., Mickan, B. S., Rinklebe, J. & Siddique, K. H. M. (2022). Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review, Environmental Pollution, 293, 118564. DOI:10.1016/j.envpol.2021.118564
  • 17. Jain, S., Jain, S., Wolf, I.T., Lee, J. & Tong, Y.W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste, Renewable Sustainable Energy Reviews, C, pp. 142-154. DOI:10.1016/j.rser.2015.07.091
  • 18. Kim, J., Park, C., Kim, T.H., Lee, M., Kim, S., Kim, S.W. & Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, Journal of Bioscience and Bioengineering, 3, pp. 271-275. DOI:10.1016/S1389-1723(03)80028-2
  • 19. Lamastra, L., Suciu, N.A. & Trevisan, M. (2018). Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer, Chemical and Biological Technologies in Agriculture, 10. DOI:10.1186/s40538-018-0122-3
  • 20. Latif, M.A., Mehta, C.M. & Batstone, D.J. (2017). Influence of low pH on continuous anaerobic digestion of waste activated sludge, Water Research, 113, pp. 42-49. DOI:10.1016/j.watres.2017.02.002
  • 21. Lee, H. & Shoda, M. (2008). Stimulation of anaerobic digestion of thickened sewage sludge by iron-rich sludge produced by the fenton method, Journal of Bioscience and Bioengineering, 1, pp. 107-110. DOI:10.1263/jbb.106.107
  • 22. Li, P., Zhao, H., Cheng, Ch., Hou, T., Shen, D. & Jiao, Y. (2024). A review on anaerobic co-digestion of sewage sludge with other organic wastes for methane production: Mechanism, process, improvement and industrial application. Biomass and Bioenergy, 185, pp. 1-18. DOI:10.1016/j.biombioe.2024.107241
  • 23. Liew, C.S., Kiatkittipong, W., Lim, J.W., Lam, M.K., Ho, Y.C., Ho, C.D., Ntwampe, S.K.O., Mohamad, M. & Usman, A. (2021). Stabilization of heavy metals loaded sewage sludge: Reviewing conventional to state-of-the-art thermal treatments in achieving energy sustainability. Chemosphere, 277, 130310. DOI:10.1016/j.chemosphere.2021.130310
  • 24. Ma, W., Xin, H., Zhong, D., Qian, F., Han, H. & Yuan, Y. (2015). Effects of different states of Fe on anaerobic digestion: A review. Journal of Harbin Institute of Technology (New Series), 22, pp. 69-75. DOI:10.11916/J.ISSN.1005-9113.2015.06.010
  • 25. Meng, L., Li, W., Zhang, S., Zhang, X., Zhao, Y. & Chen, L. (2021). Improving sewage sludge compost process and quality by carbon sources addition. Scientific Reports, 1, 1319, DOI:10.1038/s41598-020-79443-3
  • 26. Nghiem, L.D., Manassa, P., Dawson, M. & Fitzgerald, S.K. (2014). Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresource Technology, 173, pp. 443-447. DOI:10.1016/j.biortech.2014.09.052
  • 27. Orhorhoro, E. K., Orhorhoro, O. W. & Ebunilo, P. O. (2016). Analysis of the effect of carbon/nitrogen (C/N) ratio on the performance of biogas yields for non-uniform multiple feed stock availability and composition in Nigeria. International Journal of Innovative Science Engineering and Technology, 5, pp. 119-126.
  • 28. Ottigmosen, L.M., Kirkelund, G.M. & Jensen, P.E. (2013). Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere, 7, pp. 963-969. DOI:10.1016/j.chemosphere.2013.01.101
  • 29. Polster, A. & Brummack, J. (2009). Entschwefelung von Biogasanlagen. VDI-Berichte, 2057, pp. 185-193.
  • 30. Reddy, K., Nasr, M., Kumari, S., Kumar, S., Gupta, S.K., Enitan, A.M. & Bux, F. (2017). Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environmental Science and Pollution Research, 9, pp. 8790-8804. DOI:10.1007/s11356-017-8560-1
  • 31. Rossle, W. H., & Pretorius, W. A. (2001). A review of characterisation requirements for in-line prefermenters - Paper 1: Wastewater characterisation. Water SA, 27, pp. 405-412. DOI:10.4314/wsa.v27i3.4985
  • 32. Ruan, R., Cao, J., Li, C., Zheng, D. & Luo, J. (2017). The influence of micro-oxygen addition on desulfurization performance and microbial communities during waste-activated sludge digestion in a rusty scrap iron-loaded anaerobic digester. Energies, 2, 258. DOI:10.3390/en10020258
  • 33. Smith, J.A. & Carliell-Marquet, C.M. (2009). A novel laboratory method to determine the biogas potential of iron-dosed activated sludge. Bioresource Technology, 5, pp. 1767-1774. DOI:10.1016/j.biortech.2008.10.004
  • 34. Suschka, J. & Grübel, K. (2017). Low intensity surplus activated sludge pretreatment before anaerobic digestion. Archives of Environmental Protection, 4, pp. 50-57. DOI:10.1515/aep-2017-0038
  • 35. Szaja, A. & Bartkowska, I. (2024). Implementation of solidified carbon dioxide to anaerobic co-digestion of municipal sewage sludge and orange peel waste. Archives of Environmental Protection, 1, pp. 72-79. DOI:10.24425/aep.2024.149433
  • 36. Tchobanoglous, G. &d Eddy, M. (2014). Wastewater engineering: treatment and resource recovery. Vol 1, Boston, Mcgraw-Hill.
  • 37. Tyagi, V.K. & Lo, S.L. (2011). Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up-to-date review. Reviews in Environmental Science and Bio/Technology, 3, pp. 215-242. DOI:10.1007/s11157-011-9244-9
  • 38. Vongvichiankul, C., Deebao, J. & Khongnakorn, W. (2017). Relationship between pH, Oxidation Reduction Potential (ORP) and Biogas Production in Mesophilic Screw Anaerobic Digester. Energy Procedia, 138, pp. 877-882. DOI:10.1016/j.egypro.2017.10.113
  • 39. Wang, J., Zhang, Z., Ye, X., Pan, X., Lv, N., Fang, H. & Chen, S. (2020). Enhanced solubilization and biochemical methane potential of waste activated sludge by combined free nitrous acid and potassium ferrate pretreatment. Bioresource Technology, 297, 122376. DOI:10.1016/j.biortech.2019.122376
  • 40. Wan J., Gu J., Zhao Q. & Liu Y. (2016). COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment. Scientific Reports, 6, 25054. DOI:10.1038/srep25054
  • 41. Xiao, L., Liu, F., Liu, J., Li, J., Zhang, Y., Yu, J. & Wang, O. (2018). Nano-Fe3O4 particles accelerating electromethanogenesis on an hour-long timescale in wetland soil. Environmental Science, Nano, 2, pp. 436-445. DOI:10.1039/C7EN00577F
  • 42. Yang, Y., Zhang, Y., Li, Y., Zhao, H. & Peng, H. (2018). Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(III) compounds, Chemical Engineering Journal, 332, pp. 711-716. DOI:10.1016/j.cej.2017.09.133
  • 43. Ye, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Fu, Q., Wei, W., Ni, B., Cheng, D. & Liu, Y. (2022). A critical review on utilization of sewage sludge as environmental functional materials. Bioresource Technology, 363, 127984. DOI:10.1016/j.biortech.2022.127984
  • 44. Yesil, H. & Tugtas, A.E. (2019). Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes. Science of The Total Environment, 693, 133608. DOI:10.1016/j.scitotenv.2019.133608
  • 45. Zheng, W., Li, X., Wang, D., Yang, Q., Luo, K., Jing, Y. & Zeng, G. (2013). Remove and recover phosphorus during anaerobic digestion of excess sludge by adding waste iron scrap. Journal of the Serbian Chemical Society, 2, pp. 303-312. DOI:10.2298/JSC120205057Z
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22de70cf-104d-4c5e-a28f-5283b237eca1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.