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Badania porównawcze zużycia powierzchni bieżnych kół 
lokomotyw dużej mocy

The service life of railway wheels can differ significantly depending on their installed position, operating conditions, re-profiling 
characteristics, etc. This paper compares the wheels on two selected locomotives on the Iron Ore Line in northern Sweden to 
explore some of these differences. It proposes integrating reliability assessment data with both degradation data and re-profiling 
performance data. The following conclusions are drawn. First, by considering an exponential degradation path and given opera-
tion condition, the Weibull frailty model can be used to undertake reliability studies; second, among re-profiling work orders, 
rolling contact fatigue (RCF) is the principal reason; and third, by analysing re-profiling parameters, both the wear rate and the 
re-profiling loss can be monitored and investigated, a finding which could be applied in optimisation of maintenance activities.
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Resurs kół pociągu może być znacząco różny w zależności od ich miejsca zamontowania, warunków pracy, charakterystyk zwią-
zanych z reprofilacją, itp. W artykule, porównano koła dwóch wybranych lokomotyw kursujących na Linii Rud Żelaza w północ-
nej Szwecji, aby zbadać niektóre ze wspomnianych różnic. Zaproponowano możliwość łączenia danych pochodzących z oceny 
niezawodności z danymi degradacyjnymi oraz danymi z reprofilacji. Przeprowadzone badania pozwalają wyciągnąć następujące 
wnioski. Po pierwsze, krzywa wykładnicza degradacji oraz zadane warunki pracy można wykorzystać w celu przeprowadzenia 
badań niezawodności z użyciem modelu Weibulla z efektami losowymi (tzw. "frailty model"); po drugie, główną przyczyną zlecania 
reprofilacji kół jest zmęczenie toczne (RCF); po trzecie, analiza parametrów reprofilacji pozwala na monitorowanie i badanie 
zarówno szybkości zużycia kół, jak i ubytku materiału podczas reprofilacji, co może mieć zastosowanie w optymalizacji czynności 
obsługowych.

Słowa kluczowe:analiza niezawodności; koła lokomotywy; efekty losowe; reprofilacja; zużycie; markowowska 
metoda Monte Carlo.

1. Introduction

The service life of different railway wheels can vary greatly. 
Take a Swedish railway company, for example. For the wheels of its 
26 locomotives, statistics show that from 2010 to 2011, the longest 
mean time between re-profiling was around 59 000 kilometres and 
the shortest was about 31 000 kilometres. The large difference can be 
attributed to the non-heterogeneous nature of the wheels; each differs 
according to its installed position, operating conditions, re-profiling 
characteristics, etc. [6, 7, 14, 17, 23]. 

One common preventive maintenance strategy (used in our study) 
is re-profiling wheels after they run a certain distance. Re-profiling 
reduces the wheel’s diameter; once the diameter is reduced to a pre-
specified length, the wheel is replaced by a new one. Seeking to op-
timise this maintenance strategy, researchers have examined wheel 
degradation data to determine wheel reliability and failure distribution 
[6, 7, 23]. However, most studies cannot solve the combined problem 
of small data samples and incomplete datasets while simultaneously 
considering the influence of several covariates [14].

In addition, most reliability studies are implemented under the as-
sumption that individual lifetimes are independent and identically dis-
tributed (i.i.d). In reality, sometimes Cox proportional hazard (CPH) 
models cannot be used because of the dependence of data within a 
group. For instance, because they have the same operating condi-
tions, the wheels mounted on a particular bogie may be dependent. 
Modelling dependence in multivariate survival data has received con-
siderable attention, especially in cases where the datasets comprise 
inter-related subjects of the same group [1, 20]. A key development in 
modelling such data is to consider frailty models, in which the data are 

conditionally independent. When frailties are considered, the depend-
ence within subgroups can be considered an unknown and unobserv-
able risk factor (or explanatory variable) of the hazard function. In this 
paper, we consider a gamma shared frailty, first discussed by Clayton 
[4] and Oakes [16] and later developed by Sahu et al. [20], to explore 
the unobserved covariates’ influence on the wheels on the same bogie. 
We also adopt the Weibull hazard model to determine the distribution 
of the wheels’ lifetime; the validity of this model has been established 
by Lin et al. [14].

Besides the degradation analysis, re-profiling information is a key 
source of data to evaluate the wheels’ performance. As Fröhling and 
Hettasch [8] note, the “loss of material during re-profiling because of 
hollow or flange wear” is a significant element in the integrated data 
processing of the wheel-rail interface management. Even so, related 
studies remain limited.

To fill this gap in the literature, this paper compares the wheels on 
two selected locomotives on the Iron Ore Line in northern Sweden, 
taking an integrated data approach to reliability assessment by consid-
ering both degradation data and re-profiling data. 

The remainder of the paper is organised as follows. Section 2 de-
scribes the background of the comparison study, by introducing the 
Iron Ore Line, as well as the degradation data and re-profiling pa-
rameters for the locomotive wheels being studied, along with their 
operating conditions. Section 3 presents the degradation analysis 
using a Weibull frailty model; the analysis considers the wheels’ lo-
cation in the bogies and their operating conditions as covariates and 
uses Markov Chain Monte Carlo (MCMC) methods. Sections 4 to 6 
comprise the comparison study; the three sections compare the re-
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profiling work orders, the specified re-profiling parameters (the wheel 
diameters, the flange thickness,  the radial run-out, and the lateral run-
out), and the wear rate of the wheels, respectively. Each section is 
accompanied by a discussion. Section 7 offers conclusions and makes 
suggestions for future study.

2. Study Background

This section gives background information on the Iron Ore Line. 
It also introduces the degradation data and the re-profiling parameters 
for the locomotive wheels being studied, along with their operating 
conditions.

2.1.	 Iron Ore Line (Malmbanan)

The Iron Ore Line (Malmbanan) is the only existing heavy haul 
line in Europe; it stretches 473 kilometres and has been in operation 
since 1903. As Fig. 1 shows, it is mainly used to transport iron ore 
and pellets from the mines in Kiruna (also Malmberget, close to Kiru-
na,  in Sweden) to Narvik Harbour (Norway) in the northwest and 
Luleå Harbour (Sweden) in the southeast. The track section on the 
Swedish side is owned by the Swedish government and managed by 
Trafikverket (Swedish Transport Administration), while the iron ore 
freight trains are owned and managed by the freight operator (a Swed-
ish company). Each freight train consists of two IORE metric tonnes 
with axle loads of 30 tonnes. The trains operate in harsh conditions, 
including snow in the winter and extreme temperatures ranging from 
- 40 °C to + 25 °C. Because carrying iron ore results in high axle loads 
and there is a high demand for a constant flow of ore/pellets, the track 
and wagons must be monitored and maintained on a regular basis. The 
condition of the locomotive wheel profile is one of the most important 
aspects to consider.

2.2.	 Degradation data and re-profiling parameters 

We use the degradation data from two selected heavy haul cargo lo-
comotives (denoted as locomotive 1 and locomotive 2), collected from 
October 2010 to January 2012. The selection criteria are discussed in 
Section 2.3. Each locomotive is studied separately, and 2n = . For 
each locomotive, see Fig.2, there are two bogies (incl., Bogie I, Bogie 
II); and each bogie contains six wheels. The installed position of a 
wheel on a particular locomotive is specified by the bogie number 
(I, II-number of bogies on the locomotive), a wheel-set number (1, 2, 
3-number of wheel-sets for each bogie, shown as “Axel” in Fig.2) and 

the position of the wheel-set (right or left) where each wheel is mount-
ed. For instance, the abbreviation I1H represents the wheel installed in 
the first bogie, the first wheel-set and the right side.

The diameter of a new locomotive wheel in this study is about 
1250 mm. Following the current maintenance strategy, a wheel’s di-
ameter is measured after it runs a certain distance. If it is reduced to 
1150 mm, the wheel set is replaced by a new one. Otherwise, it is re-
profiled (see Fig.3). Therefore, a threshold level for failure, denoted 
as 0y , is defined as 100 mm ( 0y = 1250 mm – 1150 mm). The wheel’s 
failure condition is assumed to be reached if the diameter reaches 0y  . 
The dataset  includes the diameters of all locomotive wheels at a giv-
en inspection time, the total running distances corresponding to their 
“mean time between re-profiling”, and the wheels’ bill of material 
(BOM) data, from which we can determine their positions. 

The type of measurement tool is SIEMENS SINUMERIK (see 

Fig.3). During the re-profiling process, the re-profiling parameters 
include but are not limited to: 1) the diameters of the wheels; 2) the 
flange thickness; 3) the radial run-out; 4) the lateral run-out.

2.3.	 Comparison of the operating conditions 

In this study, both locomotive 1 and locomotive 2 are operating 
on the Iron Ore Line (Malmbanan). In Fig.4, the horizontal axle repre-
sents the different working intervals; “Nrv-Kmb” represents the route 
from Narvik to Kiruna, while “Kmb-Nrv” represents the route from 
Kiruna to Narvik. Those intervals make up the whole Iron Ore Line 
(Malmbanan). The longitudinal axle of Fig. 4 (a) represents the pro-
portion (%) of operating in each working interval (%); the longitudi-
nal axle of Fig. 4 (b) represents the running distances (kilometers) in 
those intervals. For instance, the first blue bars (around 35% in (a) and 
about 40000 kilometres in (b)) represent that, locomotive 1 has been 
operated around 40000 kilometres in the interval between “Nrv” and 
“Kmb”. And these 40000 kilometres are almost 35% of locomotive 
1’s total running distances.

As seen in Fig.4, during the period in question (from October 
2010 to January 2012), the total running distance for locomotive 1 
is 101035 kilometres and for locomotive 2, 81302 kilometres. About 
70% of the locomotives’ workload is between Narvik and Kiruna. 
There is no substantial difference between the running routes, but it 
seems that locomotive 1 works harder than locomotive 2, because the 
former runs 24% farther. As there is not a big difference between the 
topographies, we assume that the only difference in operating condi-
tions is the total running distance.

3. Degradation analyses with the Weibull frailty model

In this section, we propose the Weibull frailty model for analysing 
the wheels’ degradation data, using a MCMC computation scheme. 

Before continuing, it should be pointed that Lin et al. [5] have 
used the Bayesian Exponential Regression Model, Bayesian Weibull 
Regression Model (easily transferred to an Extreme-Value Regres-
sion Model) and Bayesian Lognormal Regression Model, separately, 
to analyze the lifetime of locomotive wheels using degradation data 
and taking into account the position of the wheel. Their results show 

Fig. 1. Geographical location of Iron Ore Line (Malmbanan) Fig. 3.	 One locomotive wheel under re-profiling and the measurement tool

Fig. 2. Wheel positions specified in this study
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that “the performance of the Weibull Regression Model is close to the 
Log-normal Regression Model, which could also be a suitable choice 
under specified situations.” As the Weibull Regression Model is more 
acceptable to engineers and the differences between the Weibull 
Regression and Lognormal Regression Models are quite small, we 
choose the former model in this comparative study.

3.1.	 Weibull frailty model 

Most reliability studies are implemented under the assumption 
that individual lifetimes are independent and identically distributed 
(i.i.d). In reality, at times, Cox proportional hazard (CPH) models can-
not be used because of the dependence of data within a group. For 
instance, because they have the same operating conditions, the wheels 
mounted on a particular bogie may be dependent. Modelling depend-
ence in multivariate survival data has received considerable attention, 
especially in cases where the datasets comprise inter-related subjects 
of the same group [1, 20]. A key development in modelling such data 
is to consider frailty models, in which the data are conditionally in-
dependent. 

Frailty models were first considered by Clayton [4] and Oakes 
[16] to handle multivariate survival data. In their models, the event 
times are conditionally independent according to a given frailty fac-
tor, which is an individual random effect. As discussed by Sahu et 
al.[20], the models formulate different variabilities and come from 
two distinct sources. The first source is natural variability, which is 
explained by the hazard function; the second is variability common to 
individuals of the same group or variability common to several events 
of an individual, which is explained by the frailty factor. 

Assume the hazard function for the thj individual in the thi group is:

	
h t h tij i( ) ( )exp( )= +0 µ xij

' ββ .	 (1)

In equation (1), µi  represents the frailty parameter for the thi

group. If ω µi i= exp( ) , the equation can also be written as:

	 h t h tij i( ) ( ) exp( )= 0 ω xij
' ββ .	 (2)

Equation (1) is an additive frailty model, and equation (2) is a 
multiplicative frailty model. In both equations, µi  and ωi  are shared 
by the individuals in the same group, and they are thus referred to as 
shared-frailty models and actually are extensions of the CPH model.

To this point, discussions of frailty models have focused on the 
forms of 1) the baseline hazard function and 2) the frailty’s distribu-
tion. Representative studies related to the former include the gamma 
process for the accumulated hazard function [3, 21], Weibull baseline 
hazard rate [20], and the piecewise constant hazard rate [1] which is 

adopted in this paper due to its flexibility. Some researchers have ex-
amined finite mean frailty distributions, including gamma distribution 
[2, 4], lognormal distribution [15],  and the like; others have studied 
non-parameter methods, including the inverse Gaussion frailty distri-
bution [11], the power variance function for frailty [5], the positive 
stable frailty distribution [10, 19], the Dirichlet process frailty model 
[19] and the Levy process frailty model [9]. In this paper, we consider 
the gamma shared frailty model, the most popular model for frailty.

From equation (2), suppose the frailty parameters ωi  are inde-
pendent and identically distributed (i.i.d) for each group and follow 

a gamma distribution, denoted by Ga( , )κ κ− −1 1 . Therefore, the prob-
ability density function can be written as:

	 f i i i( ) ( )
( )

exp( )ω
κ
κ

ω κ ω
κ

κ= ⋅ −
−

−
− −

−
−1

1
1 1

1
1

Γ
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In equation (3), the mean value of ωi  is 1, where κ is the un-
known variance of ωi s. Greater values of κ signify a closer positive 
relationship between the subjects of the same group as well as greater 
heterogeneity among groups. Furthermore, as ωi >1, the failures for 
the individuals in the corresponding group will appear earlier than if 
ωi =1; in other words, as ωi <1, the predicted lifetimes will be greater 
than those found in the independent models. 

Supposeωω = ( , , , )'ω ω ω1 2  n ; then:

	 π κ ω κ ωκ( ) exp( )ωω ∝ −
− −

=

−∏ i
i

n
i

1 1

1

1 .	 (4)

Denote the thj  individual in the thi  group as having lifetime 

i11 12( , , , ) 'nmt t t=ijt  , where 1, ,i n= 
 and 1, , ij m= 

 . Suppose 

the thj  individual in the thi  group has a 2-parameter Weibull distribu-

tion W ( , )α γ , where α > 0  and γ > 0 . Then, the p.d.f. is 

f t t tij ij ij( , ) exp( )α γ αγ γα α= −−1 , and the c.d.f. F tij( , )α γ  and the reli-

ability function R tij( , )α γ  are F t t R tij ij ij( , ) exp( ) ( , )α γ γ α γα= − = −1 1 . 

Meanwhile, the hazard rate function can be written as:

	
h t tij ij0

1( , )α γ γα α= − .	 (5)

Based on the above discussions (equation (2), (3), and (5)), the Weibull 
frailty model with gamma shared frailties can be written as

Fig. 4. Comparison of the operating conditions for locomotive 1 and locomotive 2
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	 h t tij i i ij( , ) exp( )x xij ij
'ω γαω α= −1 ββ .	 (6)

In equation (6), ωi ~ Ga( , )κ κ− −1 1 .

In reliability analyses, the lifetime data are usually incomplete, 
and only a portion of the individual lifetimes are known. Right-cen-
sored data are often called Type I censoring, and the corresponding 
likelihood construction problem has been extensively studied in the 

literature [12, 13]. Suppose the thj individual in the thi group has life-

time ijT and censoring time ijL . The observed lifetime min( , )ij ij ijt T L=
 
; 

therefore, the exact lifetime ijT will be observed only if ij ijT L≤ . In 

addition, the lifetime data involving right censoring can be represent-
ed by n  pairs of random variables ( , )tij ijυ , where υij =1  

if ij ijT L≤

and
 
υij =1

 
if ij ijT L> . This means that υij  indicates whether lifetime 

ijT is censored or not. The likelihood function is deduced as:

	 L t f t R tij ij
j

m

i

n
ij ij

i
( ) [ ( )] ( )= −

==
∏∏ υ υ1

11
.	 (7)

If we denote
 
λ γ ωij i= + +exp( log log )xij

' ββ , equation (6) be-

comes h t tij ij ij ij( , )λ α λ α α= −1 , the Weibull regression model with a 

gamma frailtyW ij( , )α λ .

If we denote the model’s dataset as D n= ( , , )ω t,X,υυ , following 

equation (7), the complete likelihood function L D( , , )ββ γ α  for the 

individuals in the thi  group can be written as:

L D t tij i ij
ijj

mi
i
n
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11
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Let π ( )⋅  denote the prior or posterior distributions for the param-

eters. Then, the joint posterior distribution π ω α γ( , )i Dββ, ,
 
for gam-

ma frailties ωi  can be written as: 
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Equation (9) shows that the full conditional density of each ωi  is 
a gamma distribution. Suppose γ  has a gamma prior distribution, de-

noted by γ ρ ρ~ ( , )Ga 1 2 . The full conditional density of γ is:
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Equation (10) also shows that the full conditional density of γ  
is a gamma distribution. The full conditional density of β and α  can 
be given by:

π η ω γ υ γ ωα( , , , ) exp{ exp( )'ββ ββ ββD x tij
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3.2.	 Comparison study of degradation analyses

3.2.1.	 Degradation path and lifetime data

From the dataset, we obtain 5 to 6 measurements of the diam-
eter of each wheel during its lifetime (in the period October 2010 
to January 2012). By connecting these measurements, we can de-
termine a degradation trend. In their analyses of train wheels, most 
studies (e.g., [6], [7], [14]) assume a linear degradation path. In this 
study, the corresponding running distance (kilometres) is recognized 
as the lifetime. The degradation data of the wheels are tested with 
ReliaSoft Weibull++.  The statistics of Ranks and MSE under differ-
ent assumption of degradation path are compared, including Linear 
degradation path, Exponential degradation path, Power degradation 
path, Logarithmic degradation path, Gompertz degradation path, and 
Lloyd-Lipow degradation path. The results show that, an exponential 
degradation path is a better choice for the studied locomotive wheels. 
Meanwhile, the second choice is Linear degradation, and the third one 
is Power degradation. In Table 1, we list the lifetimes as their degrada-
tion reach to the threshold level (equal to 100mm). 

Table.1.	  Statistics on degradation path and lifetime data

Locomo-
tive Bogie Life-

time**
Locomo-

tive 2 Bogie Life-
time**

1 I *159.00 2 I 205.47

1 I *162.04 2 I 205.49

1 I *159.04 2 I 207.51

1 I *159.32 2 I 207.82

1 I 152.22 2 I 211.24

1 I 151.13 2 I 211.22

1 II 163.84 2 II 203.45

1 II 163.87 2 II 203.32

1 II 157.84 2 II 203.44

1 II 157.75 2 II 204.08

1 II 159.05 2 II 203.17

1 II 159.53 2 II 203.17

* Right-censored data; ** 310× kilometres

Note: 	 some lifetime data are right-censored (denoted by the asterisk in Table.1 
However, we know the real lifetimes will exceed the predicted lifetimes.
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Following the above discussion, a wheel’s failure condition is as-
sumed to be reached if the diameter reaches 0y . We adopt the linear 
path for all wheels and set 0y = y . The lifetimes for these wheels are 
now easily determined and are shown in the “Lifetime” columns of 
Table 1. These lifetimes are the input of the Weibull frailty model, as 
discussed in Section 3.

3.2.2.	 Parameter Configuration

Following the discussion in 3.2.1, vague prior distributions are 
adopted in this paper as:

Gamma frailty prior: •	 ωi Ga~ (0.1, 0.1);

Normal prior distribution: •	 β0  ~ N (0.0, 0.001);

Normal prior distribution:  •	 β1 ~ N (0.0, 0.001);
Gamma prior distribution: •	 α ~ Ga (0.1, 0.1);
Gamma prior distribution: •	 γ ~ Ga (0.1, 0.1).

At this point, the MCMC calculations are implemented using the 
software WinBUGS [2]. We use a burn-in of 10,001 samples, along 
with an additional 10,000 Gibbs samples. 

3.2.3.	 Results

Following the convergence diagnostics (incl., checking dynamic 
traces in Markov chains, time series, and comparing the Monte Carlo 
(MC) error with Standard Deviation (SD); see [22]), we consider the 
following posterior distribution summaries (see Table 3):  the param-
eters’ posterior distribution mean, SD, MC error, and the 95% highest 
posterior distribution density (HPD) interval. 

In Table 2, β1 0< means that the wheels mounted in the first bogie 
(as 1x = ) have a shorter lifetime than those in the second (as 2x = ). 
However, the influence could possibly be reduced as more data are 
obtained in the future, because the 95% HPD interval includes a 0 
point. In addition, the heterogeneity of the wheels on the two locomo-
tives is significant. Nevertheless, ω1 1<  suggests that the predictive 
lifetimes for the wheels mounted on the first locomotive are shorter 
when the frailties are considered; however, ω2 1> indicates the op-
posite conclusion. 

By considering the random effects resulting from the natural vari-
ability (explained by covariates) and the unobserved random effects 
within the same group (explained by frailties), we can determine other 
reliability characteristics of lifetime distribution. The statistics on reli-
ability ( )R t  for the two wheels mounted in different bogies are:

0.035
1 1( ) 0.97 1.035 0.9763 exp( 0.2836 ( 0.1593 ))h t t x= × × × − + −•	

0.035
2 2( ) 0.97 1.035 1.029 exp( 0.2836 ( 0.1593 ))h t t x= × × × − + −•	

3.3.	 Discussion

The above results can be applied to maintenance optimisation, 
including lifetime prediction and replacement, preventative main-
tenance, and re-profiling. More specifically, determining reliability 
characteristics distributed over the wheels’ lifetime could be used 
to optimise replacement strategies and to support related predictions 
for spares inventory. With respect to preventative maintenance, the 
wheels installed in different bogies should be given more attention 
during maintenance. Especially when the wheels are re-profiled, they 
should be checked starting with the bogies to avoid duplication of 
efforts. Last but not least, as the operating environments are similar 
for the two locomotives considered here, the frailties between bogies 
could be caused by the locomotives themselves, the status of the bo-
gies or spring systems, and human influences (including maintenance 
policies and the lathe operator). 

4. Comparison study on re-profiling work orders

This section compares the work orders for wheel re-profiling by 
date (denoted as “by date” in Fig.5) and the corresponding bogies’ 
total number of kilometres in operation (denoted as “by kilometres” 
in Fig.6), separately.

In Fig.6, the work order statistics for re-profiling are listed by date. 
The number of the bar represents the type of work order reported in 
the system. For instance, number 1 means the reason for re-profiling is 
a high flange; number 3 represents the RCF problem; number 7 means 
the re-profiling is due to the dimension difference between wheels in 
a bogie; number 9 denotes a thick flange. The work orders have 14 
categories for re-profiling: high flange, thin flange, RCF, unbalanced 
wheel, QR measurements, out-of-round wheel, dimension difference 
in between wheels in same bogie, vibrations, thick flange, cracks, re-
marks from measurement  of the wheel by Miniprof, other defects, 
to plant for re-profiling, and hollowware. These categories are deter-
mined by the operator and are listed in Appendix A. Take Fig.5 (a) 
for example. By April 2010, the wheels of Locomotive 1 have been 
re-profiled 12. Eight times it was related to category 3 (RCF problem), 
and four times it was in category 7 (the dimension difference between 
wheels in a bogie).

In Fig.5 and Fig.6, the figures on the left side provide the statistics 
for locomotive 1, while those on the right are for locomotive 2. Note 
that in Fig.6, the work order statistics on re-profiling are listed by the 
corresponding bogies’ total number of kilometres in operation on the 
reported date. In Fig.6(b), the wheels have run 87721 kilometres and 
been re-profiled 16 times, 12 times due to category 1 (high flange) and 
4 times due to category 9 (thick flange).

It should be pointed out that since October 2010, new wheels have 
been mounted on both locomotives. However, the selected work or-
ders are from the beginning of 2010; therefore, more re-profiling has 
been done on locomotive 1.

For locomotive 1, there are two failure modes: RCF and dimen-
sional differences for wheels in the same bogie. The number of re-pro-
filing work orders due to RCF is 64; the number due to dimensional 
differences for wheels in the same bogie is 8. Locomotive 2 shows 
three failure modes, high flange, RCF and thick flange. Again, the 
dominant failure mode is RCF with 38 re-profilings, followed by high 
flange with 12 re-profilings and thin flange with 4; see Fig. 5(b). Figs. 
5(c) and (d) show the amount of material removed at each re-profiling 
for all wheels. Even here, the RCF failure dominates with more mate-
rial lost in re-profiling. Figs. 5(e) and (f) show the mean cut deep for 
each re-profiling. The RCF failure mode has deeper cuts than other 
modes; the high flange failure mode has the smallest mean cut depth.

Fig. 6 shows the same information but uses the global traveling 
distance in kilometres (km). It should be pointed out that for Locomo-

Table 2.	 Posterior distribution summaries

Param-
eter mean SD MC error 95% HPD In-

terval

β0 -0.2836 31.36 0.3449 (-60.69,61.4)

β1 -0.1593 31.62 0.3085 (-63.2,62.71)

α 1.035 3.329 0.03368 (2.449E-16,10.36)

γ 0.9726 3.101 0.02904 (1.683E-15,9.277)

ω1 0.9763 3.045 0.02924 (1.738E-16,9.595)

ω2 1.029 3.261 0.0337 (9.718E-16,10.21)

Fig. 6. Work order statistics on re-profiling by kilometre
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Fig. 5. Work order statistics on re-profiling by date

Fig. 6. Work order statistics on re-profiling by kilometre
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tive 1, Fig. 6 has more bars on the left hand side because the wheel-
sets have been changed and the recorded kilometres are different.

Generally speaking, RCF is the main type of work order for both 
locomotives. What should also be pointed out is that in the work order 
statistics, natural wear and the amount of re-profiling are considered 
simultaneously. Yet the trends in the amount of re-profiling are differ-
ent. For instance, for locomotive 1, there is a decreasing trend for new 
wheels, while locomotive 2 shows an increasing trend.  

During this investigation, we discovered a number of problems in 
the work orders. For example, some reported data cannot be recog-
nised (e.g., some wheels are apparently re-profiled twice on one date; 
some reported wheel diameters after re-profiling are even larger than 
before re-profiling). 

We suggest applying related KPIs to monitor the re-profiling work 
and the wheel performance in the future.

5. Comparison study on re-profiling parameters

In this section, we compare the re-profiling parameters (the statis-
tics before and after each re-profiling), including the diameter of the 
wheel (denoted as Rd), the flange thickness (denoted as Sd), the radial 
runout (denoted as Rr), and the axial runout (denoted as Rx). 

5.1.	 Assessment of re-profiling parameters (Rd)

Starting in this section, we only include statistics by re-profiling 
date. In addition, due to the similarities of the wheels installed in the 
same bogie, we only list statistics for the chosen wheel within each 
bogie. The upper line represents the statistics obtained before re-
profiling; the lower line represents statistics after re-profiling. Fig. 7 
shows, the y-axle is the wheel diameter and the x-axle is the re-profil-
ing date.  For locomotive 1, the graphs start with the last re-profiling 
of an old wheel; step two is the first re-profiling with new wheels. 

The wheels installed in the same bogie show similar trends in the 
before and after re-profiling statistics (denoted as ∆ Rd). ∆ Rd is de-
creasing for locomotive 1 and increasing for locomotive 2.

5.2.	 Assessment of re-profiling parameter (Sd) 

Fig. 8 shows the statistics of the Sd for the selected wheels. Lo-
comotive 1 is represented on the left hand side, with locomotive 2 
on the right.  For both, the flange thickness increases during winter 
and decreases in summer; this phenomenon is especially pronounced 
for locomotive 1 and the first bogie and first wheel-set. A reasonable 
explanation for this phenomenon (changes in flange thickness in win-
ter and summer) is that, in winter time, the wheel treads have more 
wear compared with in the summer. Therefore, as the measurements 
are taken, the positions (from the wheel treads) where to measure 
the flange thickness are lower than in the summer. Considering the 

Fig. 7. Rd statistics by date (before and after re-profiling): one example (I1H & II1H)
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wheels’ geometry, it leads to the increasing of the flange thickness 
during wither and decrease in summer time.

Like the Rd statistics, the Sd statistics for the wheels installed in 
the same bogie are quite similar. The “after” statistics are stable. The 
“before” statistics are gradually becoming stable, which means the 
gap (denoted as ∆ Sd) is decreasing.

Note that if we check the before and after statistics in different 
seasons, we see that the flange thickness decreases in summer and 
increases in winter; see Fig. 8 (a).

5.3 Assessment of re-profiling parameter (∆Rd, ∆Sd, ∆Rr, ∆Rx)

In this section, we simultaneously consider the gaps of the four 
parameters discussed above: ∆Rd, ∆Sd, ∆Rr, and ∆Rx.

As discussed above, the statistics for the wheels installed in 
the same bogie are quite similar. Among these four parameters, the 
changing of ∆Rd is the most obvious one, with ∆Sd coming second. 
The changing of ∆Rr and ∆Rx are random and the amount is quite 
small compared to the first two parameters. Therefore, we suggest 
applying the first two parameters to monitor the wheels’ re-profiling 
performance in the future.

6. Comparison of wear rate

In this section, we compare the wheels’ wear rates, shown in Ta-
bles 3 to 6. Table 3 shows locomotive 1, bogie 1 and the first wheel-set 
on the right side; Table 4 shows locomotive 1, bogie 2 and the first 
wheel-set on the right side; see Fig. 2 for the position of the bogies 
and wheel-sets. The number of re-profiling work orders is different 
between bogies: bogie 1 has 4 and bogie 2 has 5. The reason for the 

difference may be that bogie 1 was changed after the fourth re-profil-
ing. The re-profiling at times 1 to 4 was done at the same time for both 
bogies, extending over 12 months. 

As for locomotive 1, Table 3 shows that it has been running for 
123.351 km; the mean distance between re-profiling is 41.117 km. 
The distance after the last re-profiling for bogie 2 was only 17.930 
km, less than half of the average distance for re-profiling numbers 1 
to 4; see Table 4. Tables 3 and 4 also show the diameter of the wheel 
before and after re-profiling and the amount of material removed at 
each re-profiling. The mean amount of material removed during re-
profiling for bogie 1 is 16.193 mm and for bogie 2, 11.176 mm. Re-
markably, the amount of re-profiling for bogie 2, step 2 is 27.04 mm, 
much more than the others; as noted above, the mean is 16.193 mm. 
If we compare natural wear with artificial wear, the former is between 
15 mm and 20% of the total wear. In addition, the total wear rate for 
locomotive 2, bogie 1, is 0.619 mm/1000 km; for bogie 2, it is 0.393 
mm/1000km.

As mentioned, locomotive 1 and locomotive 2 have the same op-
erating conditions (see Fig. 4 for the comparison), but the figures in 
Tables 5 and 6 show different results. Table 5 shows locomotive 2, the 
first bogie, the first wheel-set, and the right hand side wheel; Table 6 
shows the second bogie, the first wheel-set, and the right hand side 
wheel. This locomotive has been re-profiled 4 times in 15 months; the 
mean distance between re-profiling is 56.990 km. The mean amount 
of material removed for re-profiling for bogie 1 is 15.10 mm; for bo-
gie 2 it is 16.51 mm. The last re-profiling for the first bogie removed 
26.59 mm and for the second bogie 31.47 mm. Finally, the total wear 
rate for locomotive 2, bogie 1, is 0.452 mm/1000 km and for bogie 2, 
0.484 mm/1000km

Explanatory comments for Tables 3, 4, 5, 6 include the following:

Fig. 8. Sd statistics by date (before and after re-profiling): one example (I1H & II1H)
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Fig. 9* Gap statistics by date (before and after re-profiling): one example (I1H & II1H)

Table 3.	 Statistics for wear rate: an example (locomotive 1, I1H)

Locomotive 1 Position I1H Total/Average

Number of re-profiling 1 2 3 4 4 times

Re-profiling date 201010 201103 201108 201110 12 months

Reported kilometres /1000km 720.254 759.032 815.661 843.605 /

Absolute kilometres /1000km 0 38.778 56.629 27.944 123.351

Diameters (before)/mm 1252.72 1240.08 1207.11 1187.81 /

Diameters (after)/mm 1243.93 1213.04 1189.64 1176.34 /

Re-profiling Amount/mm 8.79 27.04 17.47 11.47 64.77

Natural Wear/mm 0 3.85 5.93 1.83 11.61

Total Wear/mm 8.79 30.89 23.4 13.3 76.38

Re-profiling Amount % 1 0.875 0.747 0.862 0.848

Natural Wear % 0 0.125 0.253 0.138 0.152

WearRate_re-profiling / 0.697 0.308 0.41 0.525

WearRate_Natural / 0.099 0.105 0.065 0.094

WearRate_Total / 0.797 0.413 0.476 0.619

*)	 Note: To make it more clearly, we adopted two axis here (left and right). For Rd and Rr, we adopted the axis on the left side; while for Rx and Sd, we adopted 
the axis on the righ side.
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Table 4.	 Statistics for wear rate: an example (locomotive 1, II1H)

Locomotive 2 Position II1H Total/Average

Number of re-profiling 1 2 3 4 5 5 times

Re-profiling date 201010 201103 201108 201110 201112 14 months

Reported kilometres /1000km 838.124 876.902 933.531 961.475 979.405 /

Absolute kilometres /1000km 0 38.778 56.629 27.944 17.93 141.281

Diameters (before)/mm 1251.01 1241.39 1226.34 1208.59 1182.66 /

Diameters (after)/mm 1244.72 1231.16 1211.09 1195.43 1171.71 /

Re-profiling Amount/mm 6.29 10.23 15.25 13.16 10.95 44.93

Natural Wear/mm 0 3.33 4.82 2.5 12.77 10.65

Total Wear/mm 6.29 13.56 20.07 15.66 23.72 55.58

Re-profiling Amount % 1 0.754 0.76 0.84 0.462 0.808

Natural Wear % 0 0.246 0.24 0.16 0.538 0.192

WearRate_re-profiling / 0.264 0.269 0.471 0.611 0.318

WearRate_Natural / 0.086 0.085 0.089 0.712 0.075

WearRate_Total / 0.35 0.354 0.56 1.323 0.393

Table 5.	 Statistics for wear rate: an example (locomotive 2, I1H)

Locomotive 2 Position 11H Total/Average

Number of re-profiling 1 2 3 4 4 times

Re-profiling date 201010 201102 201109 201201 15 months

Reported kilometres /1000km 33.366 87.721 161.346 204.349 /

Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983

Diameters (before)/mm 1251.97 1234.15 1217.22 1201.24 /

Diameters (after)/mm 1239.04 1225.41 1205.07 1174.65 /

Re-profiling Amount/mm 12.93 8.74 12.15 26.59 60.41

Natural Wear/mm 0 4.89 8.19 3.83 16.91

Total Wear/mm 12.93 13.63 20.34 30.42 77.32

Re-profiling Amount % 1 0.641 0.597 0.874 0.781

Natural Wear % 0 0.359 0.403 0.126 0.219

WearRate_re-profiling / 0.161 0.165 0.618 0.353

WearRate_Natural / 0.09 0.111 0.089 0.099

WearRate_Total / 0.251 0.276 0.707 0.452

Table 6.	 Statistics for wear rate: an example (locomotive 2, II1H)

Locomotive 2 Position II1H Total/Average

Number 1 2 3 4 4 times

Date 201010 201102 201109 201201 15 months

Reported kilometres /1000km 33.366 87.721 161.346 204.349 /

Absolute kilometres /1000km 0 54.355 73.625 43.003 170.983

Diameters (before)/mm 1252.09 1236.67 1213.58 1200.81 /

Diameters (after)/mm 1241.75 1221.98 1204.06 1169.34 /

re-profiling Amount/mm 10.34 14.69 9.52 31.47 66.02

Natural Wear/mm 0 5.08 8.4 3.25 16.73

Total Wear/mm 10.34 19.77 17.92 34.72 82.75

re-profiling Amount % 1 0.743 0.531 0.906 0.798

Natural Wear % 0 0.257 0.469 0.094 0.202

WearSpeed_re-profiling / 0.27 0.129 0.732 0.386

WearSpeed_Natural / 0.093 0.114 0.076 0.098

WearSpeed_Total / 0.364 0.243 0.807 0.484
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Absolute kilometres = the current reported kilometres – the •	
previous reported kilometres;
Re-profiling Amount = Diameters (before) - Diameters (af-•	
ter);
Natural Wear = the previous Diameters (after) – the current •	
Diameters (before);
Total Wear = Re-profiling Amount + Natural Wear;•	
Re-profiling Amount % = Re-profiling Amount / Total Wear;•	
Natural Wear % = Natural Wear/ Total Wear;•	
WearRate_Reprofiling = Re-profiling Amount / Absolute kilo-•	
metres;
WearRate_Natural = Natural Wear / Absolute kilometres;•	
WearRate_Total = Total Wear / Absolute kilometres;•	
Average of the total wear rate = the average of WearRate_Total.•	

In addition, by comparing the interval of the re-profiling date, we 
can simply divide each re-profiling episode into seasons (for instance, 
the summer and warmer times, the winter and cooler times). 

In Table 7, we list the statistics for the WearRate_total of all 
the wheels for the two locomotives. The mean wear rates are 0.516 
mm/1000km for locomotive 1 and 0.480 mm/1000km for locomotive 
2; in other words, locomotive 1 has a 75% higher wear rate. Wheel-sets 
1, 2 and 5 have 11.6 % higher wear rate than wheel-sets 3, 4 and 6.

By comparing the above parameters of the wheels installed in dif-
ferent positions on the locomotives, we can reach the following ad-
ditional conclusions: 

the average wear rate of the wheels on locomotive 1 is greater •	
than for locomotive 2;
the natural wear is about 10% ~ 25 % of the total wear; the re-•	
profiling is about  75 %~ 90% of the total;
the natural wear in winter time is slower than in summer;•	
the re-profiling rate in winter is larger than in summer; •	
the wheels installed on the second wheel-set in the second bo-•	
gie have an abnormal higher wear rate compared to the wheels 
installed in the same bogie but on the other wheel-set; this re-
quires more attention;
The wheels installed in the same bogie perform similarly.•	

7. Conclusions

In this paper, the Weibull frailty model is used to analyse the 
wheels’ degradation.  The gamma shared frailties ωi are used to ex-
plore the influence of unobserved covariates within the same locomo-

tive. By introducing covariate ix ’s linear function x'
iββ , we can take 

into account the influence of the bogie in which a wheel is installed. 
The proposed framework can deal with small and incomplete data-
sets; it can also simultaneously consider the influence of various co-
variates. The MCMC technique is used to integrate high-dimensional 
probability distributions to make inferences and predictions about 
model parameters. Finally, we compare the statistics on re-profiling 
work orders, the performance of re-profiling parameters (denoted as 
∆Rd, ∆Sd, ∆Rr, ∆Rx), and wear rates. 

The results show the following for the two locomotives: 1) with 
the specified installation position and operating conditions, the 
Weibull frailty model is a useful tool to determine wheel reliability 
by considering an exponential degradation path; 2) rolling contact 
fatigue (RCF) is the main type of re-profiling work order; 3) the re-
profiling parameters can be applied to monitor both the wear rate and 
the re-profiling loss; 4) the total wear of the wheels can be determined 
by investigating natural wear and/or loss of wheel diameter through 
re-profiling loss, but these are different in different locomotives and 
under different operating conditions; 5) the bogie in which a wheel is 
installed is a key factor in assessing the wheel’s reliability. 

Finally, the approach discussed in this paper can be applied to 
cargo train wheels or to other technical problems (e.g. other indus-
tries, other components).

We suggest the following additional research: 
The covariates considered here are limited to the positions of •	
the locomotive wheels; more covariates must be considered. 
For example, the braking forces and the curving forces should 
also be considered. 
We have chosen vague prior distributions for the case study. •	
Other prior distributions, including both informative and non-
informative prior distributions, should be studied.
One of our research focuses in the future is to analyse the re-•	
lationship between re-profiling interval and material removal 
on the lathe, together with other influencing factors such as the 
flange wear, wheel diameter, position on the bogie, and other 
possible covariates mentioned above.
In subsequent research, we plan to use our results to optimise •	
maintenance strategies and the related LCC (Life Cycle Cost) 
problem considering maintenance costs, particularly with re-
spect to different maintenance inspection levels and inspection 
periods (long, medium and short term). 

Table 7.	 Statistics for total wear rates

WearRate_total

11H 11V 12H 12V 13H 13V 21H 21V 22H 22V 23H 23V
Locomotive 1 0.619 0.607 0.614 0.605 0.542 0.533 0.393 0.404 0.467 0.467 0.467 0.472
Locomotive 2 0.452 0.439 0.448 0.448 0.449 0.448 0.484 0.482 0.568 0.575 0.487 0.476
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Appendix A
Table A.1	 work order’s categories

Code Description Code Description Code Description

1 High flange 6 Out-of-round wheel 11 Measurements on the wheel, Miniprof

2 Thin flange 7 Dimension difference
in between wheels in bogie 12 Other defect, pressure defect

3 RCF 8 Vibrations 13 Empty, no code

4 Unbalanced wheel 9 Thick flanges 14 Plant to be re-profiled

5 QR measurements 10 Cracks 15 Double flanges
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