PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proposal of heuristic regression method applied in descriptive data analysis: case studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Environment and Electrical Engineering (17 ; 06-09.06.2017 ; Milan, Italy)
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to use the hybridized optimization method in order to find mathematical structures for analysis of experimental data. The heuristic optimization method will be hybridized with deterministic optimization method in order to that structures found require not knowledge about data generated experimentally. Five case studies are proposed and discussed to validate the results. The proposed method has viable solution for the analysis of experimental data and extrapolation, with mathematical expression reduced.
Słowa kluczowe
Rocznik
Strony
51--57
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Federal Institute of Goiás and Federal, University of Goiás, Brazil
  • Federal Institute of Goiás and Federal, University of Goiás, Brazil
  • Federal Institute of Goiás and Federal, University of Goiás, Brazil
autor
  • Federal Institute of Goiás and Federal, University of Goiás, Brazil
  • Federal Institute of Goiás and Federal, University of Goiás, Brazil
  • Federal Institute of Goiás and Federal, University of Goiás, Brazil
  • Federal Institute of Goiás and Federal, University of Goiás, Brazil
Bibliografia
  • [1] F.A. Gomes, V.M. Gomes, A. d. O. Assis, M.R. d. C. Reis, G. da Cruz, and W.P. Calixto, “Heuristic regression method for descriptive data analysis,” 2016.
  • [2] E. Garcia, R. Arora, and M.R. Gupta, “Optimized regression for efficient function evaluation,” 2012.
  • [3] W.H. Chien, L. Chen, C.C. Wei, H.H. Hsu, and T.S. Wang, “Modeling slump flow of high-performance concrete using a back-propagation network,” 2010.
  • [4] I.-C. Yeh, “Modeling slump flow of concrete using second-order regressions and artificial neural networks,” 2007.
  • [5] K. Steiglitz, G. Winham, and J. Petzinger, “Pitch extraction by trigonometric curve fitting,” 1975.
  • [6] T. Strohmer, “A levinson–galerkin algorithm for regularized trigonometric approximation,” 2000.
  • [7] A. Antoniadis, I. Gijbels, and A. Verhasselt, “Variable selection in additive models using p-splines,” 2012.
  • [8] D. Gujarati and D. Porter, “Econometria básica - 5.ed.,” 2011.
  • [9] L.A. Aguirre, “Introdução à identificação de sistemas–técnicas lineares e não-lineares aplicadas a sistemas reais,” 2004.
  • [10] M.K. Goyal, “Monthly rainfall prediction using wavelet regression and neural network: an analysis of 1901–2002 data, assam, india,” 2014.
  • [11] R.L. Eubank and P. Speckman, “Curve fitting by polynomialtrigonometric regression,” 1990.
  • [12] M.S. Couceiro, D. Portugal, N. Gonçalves, R. Rocha, J.M.A. Luz, C.M. Figueiredo, and G. Dias, “A methodology for detection and estimation in the analysis of golf putting,” 2013.
  • [13] B.U. Park, E. Mammen, Y.K. Lee, and E.R. Lee, “Varying coefficient regression models: a review and new developments,” 2015.
  • [14] H. Dette, G. Haller, et al., “Optimal designs for the identification of the order of a fourier regression,” 1998.
  • [15] P.T. Chen G, “Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems,” 2000.
  • [16] G. Broniatowski, Michel; Celant, “Interpolation and extrapolation optimal designs. 1, polynomial regression and approximation theory,” 2016.
  • [17] R. Glowinski, K. Atkinson, and W. Han, “Theoretical numerical analysis: A functional analysis framework,” 2003.
  • [18] H.A. Schilling and S.L. Harris, “Applied numerical methods for engineers using matlab,” 1999.
  • [19] W.P. Calixto, A. Paulo Coimbra, J.C. d. Mota, M. Wu, W.G. Silva, B. Alvarenga, L. d. C. Brito, A.J. Alves, E. G. Domingues, and D.P. Neto, “Troubleshooting in geoelectrical prospecting using real-coded genetic algorithm with chromosomal extrapolation,” 2015.
  • [20] L. Trefethen, Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics, 2013.
  • [21] M. Rashid, “Eletrônica de potência: circuitos, dispositivos e aplicações,” 1999.
  • [22] M.R.C. Reis, “Comparative analysis of optimization methods applied of tuning PI controller,” 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22d750de-684e-4e3a-b1da-5c31918ecbdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.