
5

ERP, implementation, cost estimation

Przemysław Plecka
*
, Krzysztof Bzdyra

**

ALGORITHM OF SELECTING COST

ESTIMATION METHODS FOR ERP

SOFTWARE IMPLEMENTATION

Abstract
The article discusses the problem of selecting estimation methods for cost

and implementation time for ERP systems, in case when system

modifications are necessary. The authors reviewed the methods available

in the literature and characterised the stages of strategic phase in the

implementation process. On the basis of the analysis of data range

and quality required by each method and the data obtained at different

stages, a selection algorithm for each stage was proposed.

1. INTRODUCTION

At the moment all significant software producers have their standard product

in ERP-class: SAP – Business Suite, Microsoft – Dynamix AX, JD Edwards –

EntrepriseOne, etc. During trade talks while the systems the parties reach

a conclusion that the organisation of processes in the company does not fully

overlap with processes supported by the computer system that is available [1].

There is a group of processes that is not represented in any functionality

in standard ERP system. This generates a need for adapting information systems

(IS) to a company. The costs of modifications increase the value of the contract

(implementation). In some cases it is the company that adapts processes to the

system, however, the costs of organisation changes are an additional burden

to the client. It is only when clients recognise the costs of system

implementation (including adaptations), they incline to consider changes in their

organisations. In order to give supplies the basis for negotiations, cost

estimation at very early stages of implementation is crucial.

*
 Politechnika Koszalińska, Wydział Elektroniki i Informatyki, ul. Śniadeckich 2, 75-453

Koszalin, e-mail: przemek.plecka@gmail.com
** Politechnika Koszalińska,Wydział Elektroniki i Informatyki, ul. Śniadeckich 2, 75-453

Koszalin, e-mail: krzysztof.bzdyra@tu.koszalin.pl

6

While estimating the costs of modifications, software providers encounter

difficulties in selecting appropriate method. Usually, they select one that they

know best and use it throughout the estimation process. Such an approach causes

large estimation errors [2]. A tool suggesting the method that produces the most

reliable results would be helpful for software developers. After each stage

of selling process, the supplier might verify the data that was gathered and

obtain a suggestion which method to choose. The stages of software lifecycle [3]

and software valuation methods are known. The question is which of the

evaluation methods produces most appropriate results of costs and time at

a given stage of strategic phase of IS implementation. The scope of the problem

was limited to ERP class information systems implemented in medium-sized

enterprises.

The methods facilitating valuation of software production are known and

discussed in literature, e.g. by McConell [4]. However, due to changes

in information technologies, the popularity of their use has still been changing.

The use of algorithmic methods at initial stages of information projects

is difficult. At that stage there are no analytic or project documentations, whose

components facilitate estimating algorithms. Despite the fact that the uses of

algorithmic methods at early stages of information projects can be found

in literature [5, 6], the practice of information project suppliers indicates

a common use of non-algorithmic methods as faster (i.e. cheaper) and easier.

In literature, one can find suggestions for using cost evaluation methods

for information projects, starting with statements that any combinations of

methods should be used, through views about when and what methods should be

used, and finishing with “step by step” procedures [7].

Negotiations with ERP system suppliers and clients concern two elements:

costs and implementation time. Consultants estimating the cost of software use

such time-consumption measures as man-hour, man-day or man-month.

With a given cost of a working unit of time for implementation, it is possible to

calculate the cost in a given currency and the time (dates) of implementation,

with consideration for possible simultaneousness of certain works.

Chapter 1 of the present article includes the description of stages in strategic

phase of implementation project with consideration for the quality of data

available for valuation. Another chapter is a review of algorithmic valuation

methods. Chapter 3 includes the description of non-algorithmic methods.

The final chapter presents the conclusions resulting from the connection of

effects from lifecycle stage and the data necessary for software valuation.

On this basis an algorithm using a selection questionnaire to choose an

evaluation method at each stage of strategic phase.

The use of symbols in Fig. 1, 3, 4, 5 and 6 is in accordance with BPMN 2.0

[8], even if full schemes may not be coherent with the notation.

7

2. LIFECYCLES STAGES OF ERP SYSTEM IMPLEMENTATION

Numerous authors describe software lifecycles focusing on software

production or developing software on individual client’s order [3]. None of the

presented models corresponds entirely to implementation process of ERP-class

software in a middle-sized company. They do not consider “flexibility” of the

end of strategic phase (concluding a contract) and possibilities of having one

additional stage – feasibility study. Feasibility study is not significant for

software lifecycle, however, it provides information for project valuation.

The stages of strategic phase are the following:

1. Initial trade talks.

2. Pre-implementation phase.

2’ Feasibility study.

3. Project of changes in the system.

The stages of strategic phase and other phases of software lifecycle

(implementation, integration, evolution) are presented in Figure 1.

Fig. 1. The stages of strategic phase and other phases of ERP system

[source: own study]

Considering cost evaluation, one should remember that in the sales process

the moment of contract conclusion is significant. It may happen right after stage

1 but not later than after the end of stage 3. The period is called the strategic

phase. It is in IS supplier’s interest to get the contract signed as soon as possible,

as the implementation of subsequent stages increases the costs with the risk

of failure to conclude the agreement at all. However, early estimation of costs

involves higher risk of estimation error.

2.1. Initial trade talks

The supplier has meetings with a prospective client in order to define the

scale and value of the contract. Usually it is one initial meeting followed by two

or three presentation meetings. Some of the elements of work range are identified

8

quickly and precisely. The concern primarily computer hardware, network

infrastructure and licences for individual ERP modules. Some elements, e.g. IS

modifications that result from non-typical users requirements are difficult

to define. At this sate the supplier cannot fully identify the needs that are not

satisfied by the standard version of ERP system. As clients’ knowledge on IS

comes from trade presentations, they cannot define precisely which requirements

are not standard. The requirements that supplier is able to obtain from the client

are usually incomplete (requirements that the client considered unimportant are

missing) and general (client is not able to define the level of specificity).

If the supplier can specify client’s expressed requirements and suggest

the un-expressed ones, attempts can be made to evaluate the changes.

For example, a client defined the requirement in production area concerning

separate order for materials from A group of goods for each commission.

Such a requirement suggest un-expressed requirement of ordering in the area

of logistics, where the management of goods from group A must be excluded

from the general plan of orders. Both requirements should be evaluated, even

though only one of them was specified by the client. At this stage, single,

specified requirements are expressed: reports aggregating the same data

in different forms, printout in a specific form used by the client,

2.2. Feasibility study and pre-implementation analysis

If the supplier was unable to evaluate system adaptation (modifications)

works clarification and specification of client’s needs must be done. Then a pre-

implementation analysis or feasibility study is prepared [9]. Although both

solutions are aimed at specifying the data for the evaluation, the basic purpose

of each is different.

Feasibility study includes information on the company in a form

of a systematic document based on economic facts [10]. The information

concerns economic, organisational and technical aspects. The aim of the study

is to define the range of works and the costs of the project. The document is used

by supplier’s decision-makers while analysing economic aspects of project

implementation.

Pre-implementation analysis does not include other the information than this

concerning computer system in the context of a given company and the work.

The result is a report including the following components: functional range of

the implementation, list and description of business processes, functions and

data advised to be included in the functional range of the system, organisational

range of the implementation, the proposed aims of the implementation, expected

business benefits, schedule of work [11]. At this stage the supplier assumes that

the requirements are complete and their level of specificity meet developers’

expectations, who rely on this document in their further works.

9

Even in a medium-sized production company recording all user requirements

and processes would be very time-consuming and expensive (from a few

thousand up to over a thousand requirement). Moreover, in most cases they

would overlap with the records in ERP system documentation.

Therefore, suppliers make a differential analysis which includes only those

elements that are not covered in a standard IS. Such a procedure shortens the

time of stage implementation but also allows the client to see the documentation

of a standard version with the pre-implementation analysis.

The supplier should evaluate the quality of requirements that were expressed

at this stage for the use of software evaluation method.

2.3. Project of system changes

Project of information system is an intermediate phase between defining the

requirements and the implementation. The documentation the is produced

exclusively for internal use of the supplier (software departments).

Depending of methods of implementation (structured, object-oriented

programming, or agile software development, etc), project documents may

include different elements [3]. Some ERP system developers worked out their

own specific methodologies. In such cases the documentation will be specific.

One such example is Select Perspective methodology [12, 13] or ARIS [14].

However, there are always common elements for evaluating software.

The first element of software developing is to specify the requirements

resulting from implementation character. The level of requirement specificity

must determine the manner of implementation in an unambiguous way.

Despite this, project documents include the elements describing data structures

and procedures of processes. There is a number of methods for presenting

project information: from DFD [15], Entity-Relationship Diagrams, through

UML models [16]. Each of them is an appropriate source of date for software

evaluation.

2.4. Summary of lifecycle stages

With subsequent stages of software lifecycle supplier’s knowledge on the

differences between processes in the company and standard software

functionalities grows. At first they have only one, incomplete set of general

requirements. In subsequent stages requirements are completed and specified.

After the project stage, the supplier can additionally use project elements such

as: data objects (tables, fields), windows, interfaces, etc for evaluation.

On the other hand, supplier’s costs grow. If a contract with client is concluded,

the costs will be included in the contract value, if not, they will be the supplier’s

cost. Input information necessary for making valuation at the subsequent stages

of project lifecycle is presented in Figure 2.

10

Fig. 2. Input information for evaluation process [source: own study]

3. ALGORITHMIC METHODS OF SOFTWARE EVALUATION

3.1. COCOMO II method

Constructive Cost Model (COCOMO) Method was proposed by Barry

Bohem in 1981 [15]. Since then a number of versions and types of this method

have been developed, e.g. COCOMO81, COCOMO II [16]. The sequence

of processes comprising the evaluation is presented in Figure 3. With the use

of COCOMO method Person per Month (PM) can be calculated on the basis of

the amount of source code in the programme Kilo Source Line of Code

(KSLOC) (process 1 in Figure 3). The information necessary for evaluating the

amount of code are obtained from the IS project documentation. The amount of

KSLOC are attributed to a number of programme elements, such as procedures,

modules, objects, etc. Because for many contemporary uses the amount of code

does not correspond to PM, the method was modified by using function point

analysis [17] (process 2 in Figure 3) calculated on the basis of compete

and specific requirements. The analysis of function points was presented in the

next chapter.

11

Fig. 3. Sequence of processes in COCOMO method [source: own study]

The first activity is defining five Scale Factors (SF), whose value was

determined empirically in five classes, depending on the level of complexity

(from very low to very high). Knowing the value of individual factors, the factor

adapting effort (E) can be determined from the formula (1):

 (1)

where:

B – constant 0.91 for COCOMO II model [23].

Nominal Person per Month is done in accordance with the formula (2):

 (2)

where:

Size – the number of code lines In KSLOC unit,

A – constant determined on the basis of previous projects = 2.94 [23].

For models from the first stages of Application Composition Model,

Early Design Model [17] nominal time should be corrected with seven

coefficients of Person per Month, in accordance with the formula (3).

 (3)

where:

EMi - Effort Multiplier.

12

For the models in another lifecycle stage (Post-Architecture Model)

the formula for nominal Person per Month was enriched by 9 indicators

(i=1..16). Alike SF values, EM were determined empirically. The data for SF

and EM calculations can be found in method documentation [17].

The literature includes a number of examples of adapting COCOMO method

[18, 19] with the use of fuzzy logic, inter alia [20, 21, 22].

3.2. Evaluation with the use of function points

Evaluation method proposed by A.J. Albrecht [23] requires the calculation of

the number of function points (FP) on the basis of specific requirements.

Then COCOMO method or Evaluation by Analogy can be used to calculate the

number of FP into Person per Month or costs. The set of user requirements that

is used in calculations must be complete and all the requirements must

be specific. The process of evaluation with the use of function points

is presented in Figure 4.

Fig. 4. Evaluation process with the use of function points [source: own study]

Function points method is based on selecting five classes of objects

in requirements or the ready program (processes 1 and 2 in Figure 4):

1) Internal Logic File (ILF),

2) External Interface File (EIF),

3) External Inputs (EI),

4) External Outputs (EO),

5) External Inquires (EQ).

The first two classes are related to data, the three other – transactions. To make

estimations at this first stage, the following indicators are used (process 3

in Figure 4):

­ RET (Record Element Type) - unique, recognisable subgroup of elements

given in ILF or EIF, correspond to the record in the table;

­ DET (Data Element Type) - Unique, identifiable field in ILF or EIF,

correspond to the field in record;

13

­ FTR (File Type Referenced) - recognisable by users, logically related

data, correspond to files or relationally connected files.

All objects in classes must be identified and attributed with appropriate value of

indicators ILF and EIF are described with RET and DET, while EO, EI and EQ

with FTR and DET. In this way the number of Unadjustment Function Points for

a given objects is read from the table. Summing UFP values of all objects in all

classes the total value of Unadjustment Function Points is obtained.

Value Adjustment Factor – VAF considers for internal system complexity,

unrelated to its functionality. Defining the value entails giving the impact of 14

factors, which may raise system complexity (process 5 in Figure 4). The list of

factors can be found in method documentation [24]. VAF value is calculated

from the formula (4):

 (4)

where:

B – empirically determined constant value 0.65 [31],

Ci - impact value of i-th factor.

On the basis of VAF the final values of function points are calculated by

correcting the Unadjustment Function Points according to the formula (5):

 (5)

Knowing FP value, efficiency can be determined with two methods (process 7

in Figure 4):

­ calculating into KSLOC with empirically determined values from

calculation table [25] and then use COCOMO method to define Person

per Month,

­ If the organisation owns historic data, FP value can be directly calculated

into Person per Month, using Estimation by Analogy method.

The source of compete and updated documentation of the method is website of

International Function Point Users Group [26].

14

4. NON-ALGORITHMIC METHODS OF SOFTWARE EVALUATION

4.1. Decomposition and reconstruction

Decomposition and reconstruction is a popular method due to its intuiti-

veness and universality. It is used in situations when whole project evaluation

generates difficulties, e.g. resulting from work heterogeneity. In practice of IT

project implementation [29] there are very few project that can be evaluated

without this method.

The method involves decomposing the range into a number of components.

The method of division is arbitrary and depends on project specifics. Suppliers

frequently do evaluation with Work Breakdown Structure (WBS) method [13].

Having done the division, the parts of objects are estimated and undergo further

division with the same or other method. The “depth” of division depends on the

evaluation methods that is going to be employed in the next stage. Even though

the literature lists this method as equal to others [4] its role in the evaluation

process is different from others. Project evaluation is started in this method, but

after decomposition, other methods of elemental evaluation are selected.

A detailed description of decomposition method according to WBS can be found

in literature [27, 28, 29, 30].

4.2. Individual expert evaluation

The method of valuation by individual expert evaluation is the most

frequently used method, not only in software development [31], but also in other

IT enterprises such as implementations and modifications. The research

conducted in USA in 2002 showed that as many as 72% of the valuations are

done with this method [36]. In the first stage, the method requires selecting

experts with appropriate knowledge and experience. Then experts evaluate the

ranges they were bestowed. In order to reduce the evaluation errors, the method

was modified with multiple evaluation for different versions of implementation.

Such a technique, called PERT (Program Evaluation and Review) [27, 33],

involves analyses of the most optimistic, the most probable case and the worst

case. However, it is different from critical path analysis (CPM [34]) because it is

used to evaluate independent tasks only. After previous decomposition

processes, the information about relations between tasks was lost. The expected

evaluation has the following form, then:

 (6)

15

where:

Cp – the most optimist value of the i-th task,

Co – the most likely value of i-th task,

Ck – the most probable value of i-th task.

The specificity of results in this group depends entirely on expert’s

experience. Selection criteria are imprecisely defined. The influence of

personality is significant in as much as experience does not guarantee more

precise evaluations. There are undervaluing, overvaluing or unexpected experts.

The method can be used from supplier’s first contacts with the client.

With appropriate use of experts, evaluation can be done even on the basis of

incomplete set of general user’s requirements.

4.3. Group expert evaluation

The method involves presenting the same range of work to more than one

expert. In unstructured version of the method (group review) the experts decide

about the valuation or its range as a group. In a structured version, called

Wideband Delphi [35, 15], experts’ work is done in a formalised way and its

result is a scoring evaluation.

The work of experts in groups is more expensive than individual work,

however, method’ advantage over individual expert evaluation is the decrease of

personality factors’ importance. In spite of different experience, characters

and inclinations, experts will either reach a common ground or, as in case of

Widebrand Delphi type, the conclusion of problem is reach by attributing pre-

selected points.

Estimation method is used frequently at initial stages of IT projects

in situations of high uncertainty of requirements.

4.4. Summing, computing, evaluating

The method concerns searching quantifiable objects, e.g. requirements,

functions, use cases, stories, reports, windows, database tables, classes in the

project. Each identified object that can be summed is attributed with estimation

constituent (cost or time). The estimated values are the function (7) of the

objects constituting an information project:

 (7)

16

where:

x – calculated object,

N – the number of summed objects,

C – computer cost of the object.

The method can be used at every stage of software development

or modification. The method is not complex provided the source documentation

allows determining the summed objects. One of the failures is high risk of

omitting objects or ranges of work that influenced the value of the whole project,

for example, ignoring supplementary tables or costs of developing filtering

inquiries while evaluating the costs of interface windows. Important stage in this

method is the evaluation of individual objects’ costs. The stage of individual

object evaluation is an important stage of this method. This can be done with

help of Individual expert evaluation or Group expert evaluation. The method

is efficient in projects with a small number of object types are identified but they

are plentiful, e.g. 30 reports, 25 SQL inquiries and 18 interfaces.

4.5. Evaluation by analogy

The method concerns dividing the project into components that already exist

in a completed project. Evaluating selected parts, one may calculate the ratio of

two projects’ sizes (new and the completed one). Knowing the relations between

the sizes and the costs of the completed project, one may estimate the value of

the new project.

The difficulty lies in collecting historic data from similar projects

and structure as the evaluated project. Additional problem is the selection of

a representative part of the decomposed project, which is a basis for multiplicity

factor. Ignoring significant objects may increase the evaluation error.

The input data for this method comes from data objects and programmes

(interfaces, SQL queries, FP). The use of requirements, even the specific ones,

does not allow calculating multiplication factor, thus doing the whole evaluation.

Therefore, the method can be used when the effects of programming are known.

4.6. Valuation based on substitution

Alike the previous one, this method requires the knowledge of costs of

previously completed in organisation of standard objects (interfaces, reports,

etc). Depending on the version of method, the objects can be grouped

differently. For example, Putnam [33] and Humphrey [36] selected classes of

objects: very small, small, medium, large and very large. Another method of

classifying the objects is a standard component method [4] used to valuate object

software. If the IS system supplier uses extreme software or close to Agile

methods [37], so called “stories” might be a standard element.

17

Then, the groups of objects are attributed with average cost values,

e.g. number of lines of code (LOC), man hours or man days. The objects from

a new project must be classified in the same manner. Then their sum can be

calculated. Similarly to the previous method, this one should also be used when

classes of programming objects are known. One exception is the organisations

using extreme or agile programming. In this case, the costs of “stories” that were

documented at the stage of talks to clients can be substituted with historic data.

The practice of evaluations [2] implies that it can be used at earlier stage

(preimplementation analysis), when only specific requirements are known.

4. CONCLUSIONS

Concluding, one should notice that implementation of the first stages of

software lifecycle provides more and more information about the planned

solution, on the one hand, and there is a number of evaluation methods available

on the other hand.

On the basis of the analysis of evaluation methods, the authors propose their

own method of selecting precise method of evaluating implementation cost

and time (modification of software during implementation).

Fig. 5. The method of evaluation at the stage of trade talks [source: own study]

For the trade talks, the algorithms of conduct is presented in Figure 5.

As it is presented, for all the groups of requirements time and cost can be

estimated only in cases when the set of requirements is complete. As software

developers do not mange to complete the set of requirements with a subset of

requirements unexpressed at the stage of feasibility study or implementation

analysis. In such a case other evaluation methods are available, what is presented

in Figure 6.

18

Fig. 6. The selection of evaluation methods at the stage

of implementation analysis (feasibility study) [source: own study]

The stage of system change provides, along with additional requirements,

the information on the works – data structure, information on the procedures,

objects, etc. Alike in previous stages, the supplier should classify the available

data. The algorithm of actions is presented in Figure 7.

Fig. 7. The selection of evaluation methods at the stage

of software project [source: own study].

The above proposition allows using the methods which are most efficient

at each stage.

REFERENCES

[1] BURNS M.: How to select and implement an ERP System [online]. 2005. Available:

http://www.180systems.com/ERPWhitePaper.pdf

[2] PLECKA P.: Selected Methods of Cost Estimation of ERP Systems' Modyfications.

Zarządzanie Przedsiębiorstwem, 2013.

[3] SOMMERVILLE I.: Software Engineering. Pearsom Education Limited, Edingurgh, 2007.

[4] MCCONELL S.: Software Estimation: Demystifying the Blac Art. Microsoft Press, 2006.

[5] MELI R.: Early Function Points: a new estimation method for software project. WSCOM97,

Berlin, 1997.

[6] SANTILLO L., CONTE M. I MELI R.: Early &Quick Function Point: Sizing More with

Less. Metrics 2005, 11 th IEEE Intl Software Metrics Symposium, Como, Italy, 2005.

[7] BOEHM B., ABTS C. I CHULANI S.: Software Development Cost Estimation Approaches

– A Survey. Annals of Software Engineering, vol. 10, no. 1-4, 2000, p. 177-205.

19

[8] BPMN: Object Management Group [online]. 2013. Available: http://www.bpmn.org

[9] FRĄCZKOWSKI K.: Zarządzanie projektem informatycznym. Oficyna Wydawnicza

Politechniki Wrocławskiej, Wrocław, 2003.

[10] PHILIPS J.: IT Project Management. On Track from Start to Finish. Osborne, 2004.

[11] JUSTYNOWICZ K.: Analiza przedwdrożeniowa coraz popularniejsza [online]. 2007.

Available: http://www.bcc.com.pl/akademia-lepszego-biznesu/analiza-przedwdrozeniowa-

coraz-popularniejsza.html

[12] ALLEN P., FROST S.: Component-Based Development for Enterprise Systems, Applying

the Select Perspective. Cambridge University Press, Cambridge, 1998.

[13] Select Business Solution [online]. Available: http://www.selectbs.com

[14] ARIS [online]. Available: http://www.softwareag.com

[15] BOEHM B.: Software Engeneering Ecomonics, Englewood Clifs, New York, 1981.

[16] BOEHM B. W.: Software Cost Estimation with COCOMO II. Prentice Hall, 2000.

[17] BAIK J.: COCOMO II, Model Definition Manual, Version 2.1. Center for Software

Engineering at the University of Southern California, 2000.

18] HELE J., PARRISH A., DIXON B., SNITH R.: Enhancing the Cocomo estimation

models. Software, IEEE, vol. 17, no. 6, p. 45-49, 2000.

19] ALJAHDALI S., SHETA A.: Software effort estimation by tuning COOCMO model

parameters using differential evolution. Computer Systems and Applications (AICCSA),

IEEE/ACS International Conference on, Hammamet, 2010.

[20] FEI Z.: f-COCOMO: fuzzy constructive cost model in software engineering,” Fuzzy

Systems, 1992., IEEE International Conference on, San Diego, CA, 1992.

[21] SATYANANDA R. C.: An Improved Fuzzy Approach for COCOMO’s Effort Estimation using

Gaussian Membership Function. JOURNAL OF SOFTWARE, vol. 4, no. 5, p. 452-459, July 2009.

[22] ATTARZADEH I., Improving estimation accuracy of the COCOMO II using an ada-ptive fuzzy

logic model. Fuzzy Systems (FUZZ), 2011 IEEE International Conference, Taipei, 2011.

[23] ALBREHT A.: Measuring Application Development Productivity. Proceedings of the Joint SHARE,

GUIDE, and IBM Application Development Symposium, Monterey, California, USA, 1997.

[24] IFPUG: Function Point Counting Practices: Manual Release 4.1, Westerville, OH: IFPUG, 1999.

[25] The QSM Function Points Languages Table [online]. QSM, 2013. Available:

http://www.qsm.com/resources/function-point-languages-table

[26] International Function Point Users Group [online]. Available: http://www.ifpug.org

[27] STUTZKE R. D.: Estimation Software-Intensive Systems. Upper Saddle River, New

York, Addison-Wesley, 2005.

[28] TAUSWORTHE R.: The work breakdown structure in software project management.

Journal of Systems and Software, vol. 1, 1984.

[29] NORMAN E., BROTHERTON S. I FRIED R.: Work Breakdown Structures.

The Foundation for Project Management Excellence, John Wiley & Sons, 2010.

[30] HAUGAN G.: Effective Work Breakdown Structures. Project Management Institute, 2002.

[31] JORGENSEN M.: A Review of Studies on Expert Estimation of Software Development

Effort. Journal of Systems and Software, vol. 70, no. 1-2, p. 37-60, 2004.

[32] KITCHENHAM B., PFLEEGER S. L., McCOLL B., EAGAN S.: An empirical study of

maintenance and development estimation accuracy. Journal of Systems and Software, vol.

64, no. 1, p. 57-77, 2002.

[33] MYERS P. L. H. W.: Measures for Excellence. Reliable Software on Time, Within Budget,

Englewood Cliffs, NY: Yourdon Press, 1992.

[34] FONDAHL J. W.: The History of Modern Project Management Precedence Diagramming Methods:

Origins and Early Development. Project Management Journal, vol. XVIII., no. 2, 1987.

[35] NASA: ISD Wideband Delphi Estimation [online]. 2004. Available:

http://software.gsfc.nasa.gov/assetsapproved/PA1.2.1.2.pdf

[36] HUMPHREY W. S.: A Discipline for Software Engineering. Addison Wesley, 1995.

[37] COHN M.: Agile Estimating and Planning. Upper Side River, NY: Prentice Hall PTR, 2005.

