PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and analytical research on relationship between tool life and vibration in cutting process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New identification and evaluation techniques for machining systems lead to an increase in the efficiency of a production system. This paper presents relationship between tool life, design features, fatigue strength and parameters of vibrations. To cope with this objective, vibration influence on tool wear is assessed, which considers the phase shift of vibration in different coordinates and forces on rake and rear faces of the tool. Tool life is predicted based on fatigue strength of tool material and parameters of tool vibrations. Static and dynamic characteristics of cutting tools during different machining conditions are analyzed using different cutting tools. Test results of cutting tools with different clamping types during static, dynamic and cutting processes, together with the simulation results suggest a relationship between the characteristics of the tool, the elastic system vibrations and tool life.
Rocznik
Strony
844--862
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Functional Nanosystems and High-temperature Materials, National University of Science and Technology ‘‘MISiS’’, No. 4, Leninsky prospect, Moscow, Russia
  • Department of Engineering Technology, Machine Tools and Metal-Cutting Tools and Instruments, People's Friendship University of Russia, No. 6, Miklukho-Maklaja Street, Moscow, Russia
  • Department of Functional Nanosystems and High-temperature Materials, National University of Science and Technology ‘‘MISiS’’, No. 4, Leninsky prospect, Moscow, Russia
autor
  • Department of Engineering Technology, Machine Tools and Metal-Cutting Tools and Instruments, People's Friendship University of Russia, No. 6, Miklukho-Maklaja Street, Moscow, Russia
Bibliografia
  • [1] A. Otto, G. Radons, Application of spindle speed variation for chatter suppression in turning, CIRP J. Manuf. Sci. Technol. 6 (2013) 102–109.
  • [2] X. Xiao, K. Zheng, W. Liao, H. Meng, Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics, Int. J. Mach. Tools Manuf. 104 (2016) 58–67.
  • [3] B.S. Prasad, M.P. Babu, Correlation between vibration amplitude and tool wear in turning: numerical and experimental analysis, Eng. Sci. Technol. Int. J. 20 (2017) 197–211.
  • [4] Y.S. Tarng, H.T. Young, B.Y. Lee, An analytical model of chatter vibration in metal cutting, Int. J. Mach. Tools Manuf. 34 (2) (1994) 183–197.
  • [5] M. Kayhan, E. Budak, An experimental investigation of chatter effects on tool life, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223 (11) (2009) 1455–1463.
  • [6] Y. Gaoa, R. Suna, J. Leopold, Analysis of cutting stability in vibration assisted machining using an analytical predictive force model, Procedia CIRP 31 (2015) 515–520.
  • [7] N. Qin, Z. Pei, C. Treadwell, D. Guo, Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for titanium drilling, J. Manuf. Sci. Eng. 131 (4) (2009) 041011– 41019.
  • [8] A.K. Ghani, I.A. Choudhury, Husni, Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool, J. Mater. Process. Technol. 127 (2002) 17–22.
  • [9] A.A. Thakre, S. Soni, Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology, Eng. Sci. Technol. Int. J. 19 (3) (2016) 1199–1205.
  • [10] G. Quintana, J. Ciurana, Chatter in machining processes: a review, Int. J. Mach. Tools Manuf. 51 (2011) 363–376.
  • [11] N. Fang, P.S. Pai, S. Mosquea, Effect of tool edge wear on the cutting forces and vibrations in high-speed finish machining of Inconel 718: an experimental study and wavelet transform analysis, Int. J. Adv. Manuf. Technol. 52 (2011) 65–77.
  • [12] F.W. Taylor, On the Art of Cutting Metals, American Society of Mechanical Engineers, New York, 1907.
  • [13] J.C. Aurich, M. Zimmermann, S. Schindler, P. Steinmann, Analysis of the machining accuracy when dry turning via experiments and finite element simulations, Prod. Eng. Res. Dev. 8 (2014) 41–50.
  • [14] S. Jeyakumar, K. Marimuthu, T. Ramachandran, Prediction of vibration amplitude and surface roughness in machining of Al6061 metal matrix composites by response surface methodology, Int. J. Mech. Mater. Eng. 7 (3) (2013) 222–231.
  • [15] V.A. Kudinov, Dynamic of Machine Tools, Mashinostroenie, Moscow, 1967.
  • [16] D.M. Letun, Study of the process of turning using diamond and ruby tools. Moscow, (dissertation), 1967.
  • [17] I.V. Kragelski, M.N. Dobichin, B.C. Kombalov, Basics Calculations for Friction and Wear, Mashinostroenie, Moscow, 1977.
  • [18] I.V. Kragelski, E.F. Nepovniashi, G.M. Kharach, Fatigue Mechanism and a Brief Methodology for the Analytical Evaluation of the Wear Rate of Friction Surfaces in Sliding, AN SSSR, Moscow, 1967.
  • [19] A.P. Markopoulos, Finite Element Method in Machining Processes, Springer-Verlag, London, 2013.
  • [20] P.I. Orlov, Basics of Designing, Mashinostroenie, Moscow, 1988.
  • [21] M.S. Blanter, I.S. Golovin, H. Neuhäuser, H.-R. Sinning, Internal Friction in Metallic Materials, Springer, Berlin/ Heidelberg/New York, 2007.
  • [22] I.V. Babakov, Vibration Theory, Nauka, Moscow, 1968.
  • [23] M. Siddhpura, R. Paurobally, A review of chatter vibration research in turning, Int. J. Mach. Tools Manuf. 61 (2012) 27–47.
  • [24] P.S. Paul, A.S. Varadarajan, R. Robinson Gnanadurai, Study on the influence of fluid application parameters on tool vibration and cutting performance during turning of hardened steel, Eng. Sci. Technol. Int. J. 19 (2016) 241–253.
  • [25] M.A. Elbestawi, F. Ismail, R. Du, B.C. Ullagaddi, Modelling machining dynamics including damping in the tool– workpiece interface, J. Eng. Ind. 116 (1994) 435–439.
  • [26] S.M. Son, H. Lim, J. Ahn, The effect of vibration cutting on minimum cutting thickness, Int. J. Mach. Tools Manuf. 46 (2006) 2066–2072.
  • [27] N.K. Chandiramani, T. Pothala, Dynamics of 2-d of regenerative chatter during turning, J. Sound Vib. 290 (2006) 448–464.
  • [28] A.G. Mamalis, J. Kundrak, A. Markopoulos, D.E. Manalakos, On the finite modeling of high speed hard turning, Int. J. Adv. Manuf. Technol. 38 (2008) 441–446.
  • [29] P. Thangavel, V. Selladurai, R. Shanmugam, Application of response surface methodology for predicting flank wear in turning operation, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 220 (2006) 997–1003.
  • [30] C.F. Bisu, P. Darnis, A. Gerard, J.Y. Knevez, Displacements analysis of self-excited vibrations in turning, Int. J. Adv. Manuf. Technol. 44 (2008) 1–16.
  • [31] A.V. Dassanayake, C.S. Suh, On nonlinear cutting response and tool chatter in turning operation, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 979–1001.
  • [32] S. Hoppe, Experimental and numerical analysis of chip formation in metal cutting, (Dissertation), RWTH Aachen, 2004.
  • [33] H. Puls, F. Klocke, D. Lung, Experimental investigation on friction under metal cutting conditions, Wear 310 (2014) 63–71.
  • [34] M. Sekar, J. Srinivas, K. Kotaiah, S. Yang, Stability analysis of turning process with tailstock-supported workpiece, Int. J. Adv. Manuf. Technol. 43 (2009) 862–871.
  • [35] N. Suzuki, K.N.E. Shamoto, K. Yoshino, Effect of cross transfer function on chatter stability in plunge cutting, J. Adv. Mech. Des. Syst. Manuf. 4 (2010) 883–891.
  • [36] T. Sisson, R. Kegg, An explanation of low speed chatter effects, ASME J. Eng. Ind. 91 (1969) 951.
  • [37] G.H. Lim, Tool-wear monitoring in machine turning, J. Mater. Process. Technol. 51 (1995) 25–36.
  • [38] H. Jamshidi, M.J. Nategh, Theoretical and experimental investigation of the frictional behavior of the tool–chip interface in ultrasonic-vibration assisted turning, Int. J. Adv. Manuf. Technol. 65 (2013) 1–7.
  • [39] S. Amini, H. Soleimanimehr, M.J. Nategh, A. Abudollah, M.H. Sadeghi, FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool, J. Mater. Process. Technol. 201 (1–3) (2008) 43–47.
  • [40] N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Analysis of forces in ultrasonically assisted turning, J. Sound Vib. 308 (3–5) (2007) 845–854.
  • [41] K. Deibel, K. Wegener, Friction effects between ultrasonic cutting blade and sheet stack, IEEE Int. Ultrason. Symp. Proc. 308 (3–5) (2012) 2663–2666.
  • [42] M.S. Fofana, K.C. Ee, I.S. Jawahir, Machining stability in turning operation when cutting with a progressively worn tool insert, Wear 255 (2003) 1395–1403.
  • [43] K.Y. Hwang, C.M. Lee, A review on the preload technology of the rolling bearing for the spindle of machine tools, Int. J. Precis. Eng. Manuf. 11 (3) (2010) 491–498.
  • [44] V.A. Rogov, S. Ghorbani, A.N. Popikov, N.I. Polushin, Improvement of cutting tool performance during machining process by using different shim, Arch. Civil Mech. Eng. 17 (3) (2017) 694–710.
  • [45] Wojciech Zebala, The influence of tool stiffness on the dimensional accuracy in titanium alloy milling, Key Eng. Mater. (Zurich) 686 (February) (2016) 108–113.
  • [46] G. Struzikiewicz, T. Otko, Dependence of shape deviations and surface roughness in the hardened steel turning, Key Eng. Mater. 581 (2014) 443–448.
  • [47] Y. Altintas, M. Eynian, H. Onozuka, Identification of dynamic cutting force coefficients and chatter stability with process damping, CIRP Ann.—Manuf. Technol. 57 (2008) 371–374.
  • [48] E. Budak, L. Tunc, Identification and modeling of process damping in turning and milling using a new approach, CIRP Ann.—Manuf. Technol. 59 (1) (2010) 403–408.
  • [49] S. Lin, M. Hu, Low vibration control system in turning, Int. J. Mach. Tools Manuf. 32 (1992) 629–640.
  • [50] E. Brinksmeier, O. Riemer, Measurement of optical surfaces generated by diamond turning, Int. J. Mach. Tools Manuf. 38 (1998) 699–705.
  • [51] A. Archenti, A computational framework for control of machining system capability, (Ph.D. thesis), KTH Royal Institute of Technology, 2011.
  • [52] L. Daghini, Improving machining system performance through designed-in damping: modelling, analysis and design solutions, (Ph.D. thesis), KTH Royal Institute of Technology, 2012.
  • [53] N.H. Hanna, S.A. Tobias, A theory of nonlinear regenerative chatter, Trans. ASME—J. Eng. Ind. 96 (1974) 247–255.
  • [54] H. Moradi, M.R. Movahhedy, G. Vossoughi, Dynamics of regenerative chatter and internal resonance in milling process with structural and cutting force nonlinearities, J. Sound Vib. 331 (2012) 3844–3865.
  • [55] G. Stepan, T. Insperger, R. Szalai, Delay, parametric excitation, and the nonlinear dynamics of cutting process, Int. J. Bifurc. Chaos 15 (9) (2005) 2783–2798.
  • [56] S.A. Tobias, Machine Tool Vibration, Blackie and Sons Ltd., 1965.
  • [57] M. Thomas, Y. Beauchamp, Statistical investigation of modal parameters of cutting tools in dry turning, Int. J. Mach. Tools Manuf. 43 (2003) 1093–1106.
  • [58] A. Shanker, An analysis of chatter vibration while turning slender work-pieces between centres, Ann. CIRP 25 (1976) 273–276.
  • [59] B.E. Clancy, B. Rao, Y.C. Shin, Time Domain Chatter Prediction Including Tool Wear Effects During Face Turning of Nickel Based Super Alloys, Society of Manufacturing Engineers, West Lafayette, ID, United states, 2002, pp. 1–8.
  • [60] J.A. Arsecularatnea, L.C. Zhang, C. Montross, Wear and tool life of tungsten carbide, PCBN and PCD cutting tools, Int. J. Mach. Tools Manuf. 46 (2006) 482–491.
  • [61] J.A. Arsecularatne, Prediction of tool life for restricted contact and grooved tools based on equivalent feed, Int. J. Mach. Tools Manuf. 44 (2004) 1271–1282.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22cfa606-ec28-4072-aab1-2574878331e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.