PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribokorozja jako efekt działania pary trącej w medium płynu synowialnego na przykładzie implantu – endoprotezy stawu biodrowegoTribokorozja jako efekt działania pary trącej w medium płynu synowialnego na przykładzie implantu – endoprotezy stawu biodrowego

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Tribocorrosion as an effect of a pair of friction in synovial fluid, as exemplified by an implant – a hip joint endoprosthesisTribocorrosion as an effect of a pair of friction in synovial fluid, as exemplified by an implant – a hip joint endoprosthesis
Języki publikacji
PL
Abstrakty
PL
Idealny materiał implantu endoprotezy stawu biodrowego powinien mieć elastyczność modułu kości, wysoką odporność na korozję i zużycie oraz doskonałą biokompatybilność. Aby osiągnąć maksymalną wydajność i trwałość implantu, producenci używają różnych materiałów do różnych części implantu. Korozja odgrywa znaczną rolę w uwalnianiu jonów metali, jednak zarówno zużycie (proces mechaniczny) jak i korozja (proces chemiczny) działają synergistycznie („tribokorozja”) w obecności płynu maziowego/synowialnego bogatego w białko. Ta interakcja powoduje generowanie złożonych produktów degradacji. Gdy dwa metale stykają się ze sobą i przechodzą proces trybologiczny (zużycie przez tarcie lub fretting), zużyty materiał w postaci gruzu zostaje uwolniony z ich węzła par trących. Są to cząstki zużycia mechanicznego lub produkty korozji i/lub jony metali. Ogólnie rzecz biorąc, tribokorozja jest procesem nieodwracalnym, skutkującym transformacją/degradacją materiału z wynikającą zmianą funkcji mechanicznej urządzenia. Wynika to z synergicznej interakcji mechanizmów ślizgowych, ściernych, frettingu, korozji szczelinowej i galwanicznej prowadzących do mechanicznej zmiany implantu. Tribokorozja systemów biologicznych jest trudna do przetestowania ze względu na złożoność struktury powierzchni i dużą liczbę zaangażowanych procesów. Odkrycie efektu synergicznego może wnieść wiele istotnych informacji na temat powstawania biotribowarstw, ich struktury i jednorodności na powierzchni implantu oraz wszelkich korzystnych (lub szkodliwych) efektów.
EN
An ideal hip joint endoprosthesis material should have bone module flexibility, high corrosion and wear resistance, and excellent biocompatibility. To achieve maximum implant performance and durability, manufacturers employ different materials for different parts of the implant. Corrosion plays an important role in the release of metal ions, however both wear (mechanical process) and corrosion (chemical process) act synergistically („tribocorrosion”) in the presence of protein-rich synovial fluid. This interaction generates complex degradation products. When two metals come into contact with each other and undergo a tribological process (wear by means of friction or fretting), the waste material is released as debris from the friction pair. These are wear particles or corrosion products and / or metal ions. In general, tribocorrosion is an irreversible process, resulting in the transformation / degradation of material, and leading to a change of the mechanical function of a device. This is due to the synergistic interaction of sliding and abrasive mechanisms, fretting, crevice and galvanic corrosion leading to a mechanical change of the implant. Tribocorrosion of biological systems is difficult to analyse due to surface structure complexity and a large number of processes involved. The discovery of the synergistic effect can provide much important information on the formation of biotribolayers, their structure and uniformity on the implant surface and any beneficial (or harmful) effects. An ideal hip joint endoprosthesis material should have bone module flexibility, high corrosion and wear resistance, and excellent biocompatibility. To achieve maximum implant performance and durability, manufacturers employ different materials for different parts of the implant. Corrosion plays an important role in the release of metal ions, however both wear (mechanical process) and corrosion (chemical process) act synergistically („tribocorrosion”) in the presence of protein-rich synovial fluid. This interaction generates complex degradation products. When two metals come into contact with each other and undergo a tribological process (wear by means of friction or fretting), the waste material is released as debris from the friction pair. These are wear particles or corrosion products and / or metal ions. In general, tribocorrosion is an irreversible process, resulting in the transformation / degradation of material, and leading to a change of the mechanical function of a device. This is due to the synergistic interaction of sliding and abrasive mechanisms, fretting, crevice and galvanic corrosion leading to a mechanical change of the implant. Tribocorrosion of biological systems is difficult to analyse due to surface structure complexity and a large number of processes involved. The discovery of the synergistic effect can provide much important information on the formation of biotribolayers, their structure and uniformity on the implant surface and any beneficial (or harmful) effects.
Rocznik
Tom
Strony
387--395
Opis fizyczny
Bibliogr. 50 poz., tab., rys.
Twórcy
  • FUCHS OIL CORPORATION (PL) Sp. z o.o., ul. Kujawska 102, 44-101 Gliwice
Bibliografia
  • [1] Di Puccio F., Mattei L. 2015. “Biotribology od artificial hip joints”. World Journal of Orthopedics 18, 6 (1): 77-94.
  • [2] Pruitt Lisa A., Chakravartula Ayyana M. 2011. Mechanics of biomaterials : fundamental principles for implant design. Cambridge University Press (Cambridge texts in biomedical engineering).
  • [3] Freemont. A. J., Denton J. 1991. Atlas of synovial fluid cytopathology, Humans, Joints, (Bones), Diseases. London.
  • [4] Urbaniak W. 2015. Smarowanie powierzchni biologicznych i inżynieryjnych substancjami o budowie warstwowej. Wydawnictwo Uniwersytetu Kazimierza Wielkiego, Bydgoszcz.
  • [5] Lis J. 2017. Nauka o materiałach, Wykład X: Dekohezja. WIMiC, AGH, Krakow, 2017.
  • [6] Malkin A.I. 2012. “Regularities and Mechanisms of the Rehbinder’s Effect”. Colloid Journal 74 (2) : 223-238.
  • [7] Buckley D.H. 1981. Surface effects in adhesion, friction, wear, and lubrication, (Tribology series; 5), Elsevier Scientific Publishing Company, Amsterdam.
  • [8] Kramer I.R. 1961. “The Effect of Surface-Active Agents on the Mechanical Behavior of Aluminum Single Crystals”. Trans. AIME 221 (5) : 989-993.
  • [9] Joffe, Adam F., ed. L.B. Loeb. 1928. The Physics of Crystals. McGraw-Hill Book Co., Inc.
  • [10] Roscoe R. 1926. “The Plastic Deformation of Cadmium Single Crystals”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21:sup1 : 399-406.
  • [11] Goriunov Iu.V., N.V. Pertsov, B.D. Summ. 1966. Effekt Rebindera. Nauka, Moscow.
  • [12] Rebinder, P.A., E.D. Shchukin. 1972. “Poverkhnostnye iavleniia ν tver-dykh telakh ν protsessakh ikh deformatsii i razrusheniia”. Uspekhi fizicheskikh nauk 108, (1) : 3.
  • [13] Rehbinder, P.A., Likhtman V.I. 1957.”Effect of Surface-Active Media on Strains and Rupture in Solids”. Proceedings of the Second International Congress on Surface Activity, London, 3 : 563–580.
  • [14] Bijukumar D.R., Abhijith Segu , Julio C M Souza , XueJun Li , Mark Barba , Louis G Mercuri , Joshua J Jacobs , Mathew Thoppil Mathew. 2018. “Systemic and local toxicity of metal debris released from hip prostheses: A review of experimental approaches”. Nanomedicine 14 (3): 951–963.
  • [15] Ryu J.J., Shrotriya P. 2013. Synergistic mechanisms of bio-tribocorrosion in medical implants, Bio-tribocorrosion in biomaterials and medical implants Woodhead Publishing Limited, pp. 25–45.
  • [16] Walczak M., Sancy M. 2016. Biotribocorrosion of Implants. D.G. Poitout (ed.), Biomechanics and Biomaterials in Orthopedics, Springer-Verlag, London, pp. 199–226.
  • [17] Wood R.J.K., Thakare M.R. 2013. Abrasion-corrosion mechanisms of implant materials, Bio-tribocorrosion in biomaterials and medical implants, Woodhead Publishing Limited, 2013 : 111–129.
  • [18] Hallab N.J., Jacobs J.J. 2013. Chapter II.5.6 Orthopedic Applications, Section II.5, Biomaterials Science An Introduction to Materials in Medicine. Elsevier Inc., Oxford, pp. 841–882.
  • [19] Mathew M.T., Wimmer M.A. 2013. Tribocorrosion in artificial joints: in vitro testing and clinical implications, Bio-tribocorrosion in biomaterials and medical implants. Woodhead Publishing Limited, 2013, pp. 341–37.
  • [20] Affatato S. 2014. Advances in Biomaterials and their Tribological Interactions, Perspectives in Total Hip Arthroplasty. Woodhead Publishing Series in Biomaterials: Number 84, Cambridge.
  • [21] Affatato S. 2014. Tribological interactions of hybrid hardbearings in total hip arthroplasty (THA), Perspectives in Total Hip Arthroplasty. Advances in Biomaterials and their Tribological interactions. Woodhead Publishing Series in Biomaterials: Number 84, Cambridge, pp. 147–156.
  • [22] Neville A., Yan Y. 2013. Bio-tribocorrosion: surface interactions in total joint replacement (TJR), Bio-tribocorrosion in biomaterials and medical implants. Woodhead Publishing Limited, pp. 309–340.
  • [23] Geringer J., Kim K., Pellier J., Macdonald D. D. 2013. Fretting corrosion processes and wear mechanisms in medical implants, Bio-tribocorrosion in biomaterials and medical implants, Woodhead Publishing Limited, pp. 46–73.
  • [24] Oliveira L.Y.S., Kuromoto N.K., Siqueira C.J.M. 2014. “Treating orthopedic prosthesis with diamond-like carbon: minimizing debris in Ti6Al4V”. Journal of Materials Science: Materials in Medicine 25 (10) : 2347–2355.
  • [25] Osterle W., Klaffke D., Griepentrog M., Gross U., Kranz I., Knabe C. 2008. “Potential of wear resistant coatings on Ti-6Al-4V for artificial hip joint bearing surfaces”. Wear 264 (7–8) : 505–517.
  • [26] Cai J.B., Wang X.L., Bai W.Q., Wang D.H., Gu C.D., Tu J.P. 2013. “Microstructure, mechanical and tribological properties of A-C/A-C:Ti nanomultilayer film”. Surface and Coatings Technology 232 : 403–411.
  • [27] Ortega-Saenz J.A., Alvarez-Vera M., Hernandez-Rodriguez M.A.L. 2013. “Biotribological study of multilayer coated metal-on-metal hip prostheses in a hip joint simulator”. Wear 301 (1–2) : 234–242.
  • [28] Azzi M., Paquette M., Szpunar J.A., Klemberg- Sapieha J.E., Martinu L. 2009. “Tribocorrosion behaviour of DLC-coated 316L stainless steel”. Wear 267 (5–8) : 860–866.
  • [29] Leslie I.J., Williams S., Brown C., Anderson J., Isaac G., Hatto P., Ingham E., Fisher J. 2009. “Surface engineering: a low wearing solution for metal-onmetal hip surface replacements”. Journal of Biomedical Materials Research Part B: Applied Biomaterials 90 (2) : 558–565.
  • [30] Mallia B., Dearnley P.A. 2007. “The corrosion – wear response of Cr – Ti coatings”. Wear 263 : 679–690.
  • [31] Dearnley P.A., Mallia B. 2012. “The chemical wear (corrosion- wear) of novel Cr based hard coated 316L austenitic stainless steels in aqueous saline solution”. Wear 306 (1–2) : 263–275.
  • [32] Balagna C., Faga M.G., Spriano S. 2012. “Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement”. Materials Science and Engineering C 32 (4) : 887–895.
  • [33] Balagna C., Faga M.G., Spriano S. 2014. “Tribological behawior of a Ta-based coating on a Co-Cr-Mo alloy”. Surface and Coatings Technology 258 : 1159– 70.
  • [34] Ding M.H., Wang B.L., Li L., Zheng Y.F. 2010. “A study of TaxC1-x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering”. Applied Surface Science 257 (3) : 696–703.
  • [35] Serro A.P., Completo C., Colaco R., dos Santos F., da Silva C.L., Cabral J.M.S., Araujo H., Pires E., Saramago B. 2009. “A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications”. Surface and Coatings Technology 203 (24): 3701–3707.
  • [36] Wang S., Liu Y., Zhang C., Liao Z., Liu W. 2014. “The improvement of wettability, biotribological behawior and corrosion resistance of titanium alloy pretreated by thermal oxidation”. Tribology International 79 : 174–182.
  • [37] Dearnley P.A., Dahm K.L., Cimenoğlu H. 2004. “The corrosion- wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V”. Wear 256 (5) : 469–479.
  • [38] Garcia J.A., Diaz C., Mandl S., Lutz J., Martinez R., Rodriguez R.J. 2010. “Tribological improvements of plasma immersion implanted CoCr alloys”. Surface and Coatings Technology 204 (18–19) : 2928–2932.
  • [39] Qi H., Wu H.Y. 2013. “Effect of surface modification of pure Ti on tribological and biological properties of bone tissue”. Surface Engineering 29 (4) : 300–305.
  • [40] Celik A., Aslan M., Yetim A.F., Bayrak O. 2014. “Wear behavior of plasma oxidized cocrmo alloy under dry and simulated body fluid conditions”. Journal of Bionic Engineering 11 (2) : 303–310.
  • [41] Pierret C., Maunoury L., Monnet I., Bouffard S., Benyagoub A., Grygiel C., Busardo D., Muller D., Hoche D. 2014. “Friction and wear properties modification of Ti-6Al-4V alloy surfaces by implantation of multicharged carbon ions”. Wear. 319 (1–2) : 19–26.
  • [42] Buhagiar J., Qian L., Dong H. 2010. “Surface property enhancement of Ni- free medical grade austenitic stainless steel by low-temperature plasma carburizing”. Surface and Coatings Technology 205 (2) : 388–395.
  • [43] Lutz J., Mandl S. 2010. “Reduced tribocorrosion of CoCr alloys in simulated body fluid after nitrogen insertion”. Surface and Coatings Technology 204 (18–19) : 3043–3046.
  • [44] Wang Q., Zhang L., Dong J. 2010. “Effects of plasma nitriding on microstructure and tribological properties of CoCrMo alloy implant materials”. Journal of Bionic Engineering 7 (4) : 337–344.
  • [45] Guo Z., Pang X., Yan Y., Gao K., Volinsky A.A., Zhang T-Y. 2015. “CoCrMo alloy for orthopedic implant application enhanced corrosion and tribocorrosion properties by nitrogen ion implantation”. Applied Surface Science. 347 : 23–34.
  • [46] Balla V.K., Soderlind J., Bose S., Bandyopadhyay A. 2014. “Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy”. Journal of the Mechanical Behavior of Biomedical Materials 32 : 335–344.
  • [47] Tarabolsi M., Klassen T., Mantwill F., Gartner F., Siegel F., Schulz A.P. 2013. “Patterned CoCrMo and Al2O3 surfaces for reduced free wear debris in artificial joint arthroplasty”. Journal of Biomedical Materials Research – Part A. 101 (12) : 3447–3456.
  • [48] Luo X., Li X., Sun Y., Dong H. 2013. “Tribocorrosion behavior of S-phase surface engineered medical grade Co-Cr alloy”. Wear. 302 (1–2) : 1615–1623.
  • [49] Buhagiar J., Jung A., Gouriou D., Mallia B., Dong H. 2013. “S-phase against S-phase tribopairs for biomedical applications”. Wear. 301 (1–2) : 280–289.
  • [50] Choudhury D, Walker R, Roy T, Paul S, Mootanah R. 2013. “Performance of honed surface profiles to artificial hip joints: an experimental investigation”. International Journal of Precision Engineering and Manufacturing 14 (10) : 1847–1853.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22ccf790-5696-438e-a652-7c1eede6a021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.