PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of primary microstructure of γ–γʹ Co–Al–W cobalt-based superalloy

Identyfikatory
Warianty tytułu
PL
Charakterystyka mikrostruktury pierwotnej nadstopu kobaltu Co–Al–W typu γ–γʹ
Języki publikacji
EN
Abstrakty
EN
Present paper concerns primary structure of cobalt-based superalloys Co–9Al–9W with γ/γʹ structure, casted via induction melting process. Common problems described in literature, concerning difficulties in obtaining uniform distribution of tungsten, particularly in interdendritic areas were reason of utilization of modified casting process. Alter method is based on tungsten dosing into liquid metal bath of cobalt and aluminium during melting. This method allows to obtain microstructure characterized by considerably decreased microsegregation, especially in case of tungsten. This type of primary structure results in simplified and more economical homogenization performance of casts before further technological processes. Used method of casting give the possibility to obtain samples with small effect of segregations of alloying elements. Observed effect of interdendritic segregations were related to higher level of aluminium concentration and lower cobalt, but in both cases the measured difference was 2 to 4 % at.
PL
Celem artykułu jest charakterystyka mikrostruktury pierwotnej stopu Co–9Al–9W w stanie bezpośrednio po odlaniu, z uwzględnieniem rozmieszczenia składników stopowych w rdzeniach dendrytów i obszarach międzydendrytycznych w różnych strefach odlewu oraz profilu mikrotwardości. Ważną kwestią była jednorodność rozmieszczenia wolframu w obszarach rdzeni dendrytów i w przestrzeniach międzydendrytycznych, co jest typowym problemem w stopach z dodatkiem wolframu.
Rocznik
Strony
217--223
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
autor
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
autor
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
autor
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
Bibliografia
  • [1] Sims C. T., Hagel C. W.: The superalloys. John Wiley & Sons, New York (1972).
  • [2] Lux B., Bollmann W.: On the mechanism of carbide precipitation in cobalt base alloy 509. Cobalt 42 (1969) 3÷13.
  • [3] Sims C. T., Stoloff N. S., Hagel W. C.: Superalloys II. John Wiley & Sons, New York (1987) 135÷163.
  • [4] Massalski T. B., Okamoto H., Subramanian P. R., Kacprzak L.: Binary alloy phase diagrams. Second edition 1 (ASM) 137.
  • [5] Ellner M., Kek S., Predel B.: Zur existenz einer phase Co3Al vom Cu3Austrukturtyp. Journal of Alloy and Compounds 189 (1992) 245÷248.
  • [6] Sato J., Omori T., Oikawa K., Ohnuma I., Kainuma R., Ishida K.: Cobaltbase high-temperature alloys. Science 312 (2006) 90÷91.
  • [7] Massalski T. B., Okamoto H., Subramanian P. R., Kacprzak L.: Binary alloy phase diagrams. Second Edition 2 (ASM) 1251.
  • [8] Rogister C., Coutsouradis D., Habraken L.: Improvement of heat-resisting cobalt-base alloys by precipitation hardening. Cobalt 34 (1967) 3÷9.
  • [9] Shinagawa K., Omori T., Oikawa K., Kainuma R., Ishida K.: Ductility enhancement by boron addition in Co–Al–W high-temperature alloys. Scripta Materialia 61 (2009) 612÷615.
  • [10] Feng G., Li H., Li S. S., Sha J. B.: Effect of Mo additions on microstructure and tensile behavior of a Co–Al–W–Ta–B alloy at room temperature. Scripta Materialia 67 (2012) 499÷502.
  • [11] Chen M., Wang C. Y.: First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ′-Co3(Al, W). Scripta Materialia 60 (2009) 659÷662.
  • [12] Povstugar I., Choi P. P., Neumeier S., Bauer A., Zenk C. H., Goken M., Raabe D.: Elemental partitioning and mechanical properties of Ti- and Tacontaining Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Materialia 78 (2014) 78÷85.
  • [13] Meher S., Banerjee R.: Partitioning and site occupancy of Ta and Mo in Co-base γ/γ′ alloys studied by atom probe tomography. Intermetallics 49 (2014) 138÷142.
  • [14] Ooshima M., Tanaka K., Okamoto N. L., Kishida K., Inui H.: Effects of quaternary alloying elements on the γ′ solvus temperature of Co–Al–W based alloys with fcc/L12 two-phase microstructures. Journal of Alloys and Compounds 508 (2010) 71÷78.
  • [15] Omori T., Oikawa K., Sato J., Ohnuma I., Kattner U. R., Kainuma R., Ishida K.: Partition behavior of alloying elements and phase transformation temperatures in Co–Al–W-base quaternary systems. Intermetallics 32 (2013) 274÷283.
  • [16] Suzuki A., De Nolf G. C., Pollock T. M.: Stress anomalies in γ/γʹ twophase Co–Al–W-base alloys. Scripta Materialia 56 (2007) 385÷388.
  • [17] Miura S., Ohkubo K., Mohri T.: Mechanical properties of Co-based L12 intermetallic compound Co3(Al, W). Materials Transactions 48 (2007) 2403÷2408.
  • [18] Suzuki A., Pollock T. M.: High-temperature strength and deformation of γ/γʹ two-phase Co–Al–W-base alloys. Acta Materialia 56 (2008) 1288÷1297.
  • [19] Bauer A., Neumeier S., Pyczak F., Goken M.: Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scripta Materialia 63 (2010) 1197÷1200.
  • [20] Titus M. S., Suzuki A., Pollock T. M.: Creep and directional coarsening in single crystals of new γ–γʹ cobalt-base alloys. Scripta Materialia 66 (2012) 574÷577.
  • [21] Eggeler Y. M., Titus M. S., Suzuki A., Pollock T. M.: Creep deformationinduced antiphase boundaries in L12-containing single-crystal cobalt-base superalloys. Acta Materialia 77 (2014) 352÷359.
  • [22] Klein L., Bauer A., Neumeier S., Goken M., Virtanen S.: High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corrosion Science 53 (2011) 2027÷2034.
  • [23] Klein L., Virtanen S.: Corrosion properties of novel γ′–strengthened Cobase superalloys. Corrosion Science 66 (2013) 233÷241.
  • [24] Klein L., Shen Y., Killian M. S., Virtanen S.: Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys. Corrosion Science 53 (2011) 2713÷2720.
  • [25] Vermaak N., Mottura A., Pollock T. M.: Cyclic oxidation of high temperature coatings on new γ′-strengthened cobalt-based alloys. Corrosion Science 75(2013) 300÷308.
  • [26] Yan H. Y., Vorontsov V. A., Dye D.: Effect of alloying on the oxidation behaviour of Co–Al–W superalloys. Corrosion Science 83 (2014) 382÷395.
  • [27] Makineni S. K., Nithin B.,Chattopadhyay K.: A new tungsten-free γ–γ′ Co–Al–Mo–Nb-based superalloy. Scripta Materialia 98 (2015) 36÷39.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22c77693-ec13-4620-80b1-cbd3455324a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.