PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-Wheeler Electric Energy Saving Vehicle Prototype and Experimental Energy Intensive Research

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The three-wheeled vehicle construction and ready prototype are described. The vehicle is equipped with two energy recovery systems: one based on lithium-ion battery and electrical engine while the other one is applied with the spring mechanisms to accumulate energy. Both systems are combined together by an energy managing system based on a microcontroller. The construction serves as a testing and developing platform for energy save and recovery systems. At the end of the paper conveyed studies involving the vehicle range and efficiency are described and discussed.
Rocznik
Strony
33--50
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Poznan University of Technology, Institute of Applied Mechanics, Faculty of Mechanical Engineering and Management
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management
autor
  • Department of Logic and Cognitive Science, Institute of Psychology Adam Mickiewicz University
Bibliografia
  • 1. Chung, C.-T. and Hung, Y.-H. (2015). Performance and energy management of a novel full hybrid electric powertrain system. Energy, 89:626–636.
  • 2. Corazza, M. V., Guida, U., Musso, A., and Tozzi, M. (2016). A new generation of buses to support more sustainable urban transport policies: A path towards “greener” awareness among bus stakeholders in europe. Research in Transportation Economics, 55:20–29.
  • 3. Das, S., Graziano, D., Upadhyayula, V. K., Masanet, E., Riddle, M., and Cresko, J. (2016). Vehicle lightweighting energy use impacts in us light-duty vehicle fleet. Sustainable Materials and Technologies, 8:5–13.
  • 4. Ishak, M. I., Ogino, H., and Yamamoto, Y. (2016). Numerical simulation analysis of an oversteer in-wheel small electric vehicle integrated with four-wheel drive and independent steering. International Journal of Vehicular Technology, 2016.
  • 5. Kumar, N. S. (2016). Increasing the cruise range and reducing the capital cost of electric vehicles by integrating auxiliary unit with the traction drive. International Journal of Vehicular Technology, 2016.
  • 6. Łagoda, T. (2008). Lifetime estimation of welded joints. Springer.
  • 7. Łagoda, T. and Ogonowski, P. (2007). Fatigue life estimation of notched specimens under bending and torsion with strain energy density parameter. Journal of Theoretical and Applied Mechanics, 45(2):349–361.
  • 8. Lajunen, A. and Lipman, T. (2016). Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy, 106:329–342.
  • 9. Lan, C., Xu, J., Qiao, Y., and Ma, Y. (2016). Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Applied Thermal Engineering, 101:284–292.
  • 10. Luo, Y., Shi, Y., Li, W., and Cai, N. (2015). Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell. Energy, 89:637–647.
  • 11. Mahmoud, M., Garnett, R., Ferguson, M., and Kanaroglou, P. (2016). Electric buses: A review of alternative powertrains. Renewable and Sustainable Energy Reviews, 62:673–684.
  • 12. Nam, K., Hori, Y., and Lee, C. (2015). Wheel slip control for improving tractionability and energy efficiency of a personal electric vehicle. Energies, 8(7):6820– 6840.
  • 13. Niegoda, J. (2001). Projektowanie pełnohydraulicznego układu kierowniczego. Politechnika Gdańska.
  • 14. Obst, M., Kurpisz, D., and Mencel, K. (2016). Energy based mechanical characteristics of polymers POM-C, PET, PA6, PVC, PVDF. Machine Dynamics Research, 39(4).
  • 15. Putra, N., Ariantara, B., and Pamungkas, R. A. (2016). Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering, 99:784–789.
  • 16. Raugei, M., Morrey, D., Hutchinson, A., and Winfield, P. (2015). A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. Journal of Cleaner Production, 108:1168–1176.
  • 17. Rosiński, M. (2008). Odzyskiwanie ciepła w wybranych technologiach inżynierii środowiska. Oficyna Wydawnicza Politechniki Warszawskiej.
  • 18. Smith, J., Hinterberger, M., Schneider, C., and Koehler, J. (2016). Energy savings and increased electric vehicle range through improved battery thermal management. Applied Thermal Engineering, 101:647–656.
  • 19. Taghavipour, A., Azad, N. L., and McPhee, J. (2015). Real-time predictive control strategy for a plug-in hybrid electric powertrain. Mechatronics, 29:13–27.
  • 20. Wegner, T. (2009). Energetyczne modelowanie w nieliniowej mechanice materiałów i konstrukcji. Wydawnictwo Politechniki Poznańskiej.
  • 21. Yi, C., Epureanu, B. I., Hong, S.-K., Ge, T., and Yang, X. G. (2016). Modeling, control, and performance of a novel architecture of hybrid electric powertrain system. Applied Energy, 178:454–467.
  • 22. Zhang, P., Yan, F., and Du, C. (2015). A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics. Renewable and Sustainable Energy Reviews, 48:88–104.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22c13d46-55f3-4155-8055-096965f3b70d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.