Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of local bacteria is preferred in bioleaching as an environmental-friendly alternative technology in gold mining. In a preliminary study, rhizobacteria were isolated and cultured from three types of hyperaccumulator vegetation from the Ratatotok gold mine, Indonesia, namely Pteris vittata L., Syzygium aromaticum L., and Swietenia mahagoni Jacq. These rhizobacteria still need to be characterised and identified. This study is aimed to cover bacterial phenotypic characterisation, assessment of bacteria resistance to tailing, and identification of bacterial strains the exhibit the highest resistance to tailings. The assessment was carried out across a spectrum of tailing concentrations, selecting the three most robust strains for molecular identification. The process involved genotypic characterisation to determine the species name by analysing the 16S rRNA gene. The results reveal that the phenotypic characteristics of the bacteria isolates vary, but all of them are the indole acetic acid (IAA) hormone producers. The highest IAA producer is the isolate from the rhizosphere of S. aromaticum. Based on the genotypic characterisation test, three most resistant isolates to tailing stress are the following strains Pseudomonas aeruginosa (RTKP1) and Stenotrophomonas geniculata (RTKP2), both from the rhizosphere of P. vittata; as well as Bacillus cereus (RTKS) from the rhizosphere of S. aromaticum. These three strains need to be further tested for their bioleaching capability to recover gold from tailings. Additionally, this study recommends that gold recovery using biological agents can combine the role of hyperaccumulator plants in phytomining and rhizobacteria in bioleaching.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
209--218
Opis fizyczny
Bibliogr. 42 poz., mapa, rys., tab.
Twórcy
autor
- Universitas Negeri Yogyakarta, Faculty of Mathematics and Natural Sciences, Jl. Colombo No. 1 Karangmalang (55281), Yogyakarta, Indonesia
autor
- Universitas Negeri Yogyakarta, Faculty of Mathematics and Natural Sciences, Jl. Colombo No. 1 Karangmalang (55281), Yogyakarta, Indonesia
autor
- Universitas Negeri Yogyakarta, Faculty of Mathematics and Natural Sciences, Jl. Colombo No. 1 Karangmalang (55281), Yogyakarta, Indonesia
autor
- Universitas Gadjah Mada, Faculty of Engineering, Department of Geological Engineering, Jl. Grafika 2 Bulaksumur (55281), Yogyakarta, Indonesia
autor
- PT Sumber Energi Jaya, Jl. Elang Laut, Ruko Boulevard No. 32-33 (14470), Jakarta, Indonesia
autor
- Halu Oleo University, Faculty of Mathematics and Natural Sciences, Jl. HEA Mokodompit, Kampus Hijau Bumi Tridharma Anduonohu (93561), Kendari, Indonesia
Bibliografia
- Aguilar, N.C. et al. (2020) “Isolation and characterisation of bacteria from a Brazilian gold mining area with a capacity of arsenic bioaccumulation,” Chemosphere, 240, 124871. Available at: https://doi.org/10.1016/j.chemosphere.2019.124871.
- Álvarez-López, V. et al. (2015) “Rhizobacterial communities associated with the flora of three serpentine outcrops of the Iberian Peninsula,” Plant Soil, 403(1–2), pp. 233–252. Available at: http://dx.doi.org/10.1007/s11104-015-2632-0.
- Aminatun, T., Rakhmawati, A. and Atun, S. (2022) Eksplorasi jenis-jenis vegetasi hiperakumulator emas yang berpotensi sebagai agen phytomining di lahan bekas tambang emas [Exploration of gold hyperaccumulator vegetation types which have potential as phytomining agents on ex-gold mine land]. Unpublished research report. Yogyakarta: Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta.
- Aurangzeb, N. et al. (2020) “Growth enhancement and cadmium uptake efficiency in Medicago sativa by endophytic bacteria isolated from Dathura innoxia,” Fresenius Environmental Bulletin and Advances in Food Sciences, 29(4), pp. 2134–2143.
- Azzaman, M.A., Idrus, A. and Titisari, A.D. (2021) “Geology, hydrothermal alteration and mineralization of the Carlin-type gold deposit at South Ratatotok, Southeast Minahasa Regency, North Sulawesi Province, Indonesia,” IOP Conference Series: Earth and Environmental Science, 789(1). Available at: https://doi.org/10.1088/1755-1315/789/1/012076.
- Babalola, O.O., Aremu, B.R. and Ayangbenro, A.S. (2019) “Draft genome sequence of heavy metal-resistant Bacillus cereus NWUAB01,” Microbiology Resource Announcements, 8(7), pp. 1–3. Available at: https://doi.org/10.1128/MRA.01706-18.
- Brinza, L. et al. (2021) “Geochemical investigations of noble metal-bearing ores : Synchrotron- based micro-analyses and microcosm bioleaching studies,” Chemosphere, 270(54), 129388. Available at: https://doi.org/10.1016/j.chemosphere.2020.129388.
- Cabrales-González, M. et al. (2022) “Bioleaching of As from mine tailings using an autochthonous Bacillus cereus strain,” Revista Mexicana de Ingeniera Quimica, 21(2), pp. 1–17. Available at: https://doi.org/10.24275/rmiq/Bio2723.
- Dwimartina, F., Joko, T. and Arwiyanto, T. (2021) “Karakteristik morfologi dan fisiologi bakteri endofit dan rizobakteri dari tanaman cengkeh sehat [Morphological and physiological characteristics of endophytic bacteria and rhizobacteria from healthy clove plants],” Agro Wiralodra, 4(1), pp. 1–8. Available at: https://doi.org/10.31943/agrowiralodra.v4i1.58.
- El-Sayed, S. et al. (2021) “Influence of Bacillus cereus-gold interaction on bio-flotation of gold in the presence of potassium butyl xanthate,” Biointerface Research in Applied Chemistry, 11(5), pp. 13005–13018. Available at: https://doi.org/10.33263/BRIAC115.1300513018.
- Gani, P.R., Abidjulu, J. and Wuntu, A.D. (2017) “Analisis air limbah pertambangan emas tanpa izin Desa Bakan Kecamatan Lolayan Kabupaten Bolaang Mongondow [Analysis of illegal gold mining wastewater in Bakan Village, Lolayan District, Bolaang Mongondow Regency],” Jurnal MIPA, 6(2), pp. 6–11. Available at: https://ejournal.unsrat.ac.id/v3/index.php/jmuo/article/view/16927/16460 (Accessed: April 01, 2023).
- Govarthanan, M. et al. (2016) “Bioremediation of heavy metals using an endophytic Bacterium paenibacillus sp. RM isolated from the roots of Tridax procumbens,” 3 Biotech, 6(242), pp. 2–7. Available at: https://doi.org/10.1007/s13205-016-0560-1.
- Herlina, L. et al. (2020) “Phytoremediation of lead contaminated soil using croton (Cordiaeum variegatum) plants,” Journal of Ecological Engineering, 21(5), pp. 107–113. Available at: https://doi.org/10.12911/22998993/122238.
- Ishak, I., Ardyati, T. and Aini, L.Q. (2018) “Screening of rhizosphere bacteria from clove (Syzygium aromaticum) in Tidore Island as plant growth promoting rhizobacteria,” The Journal of Experimental Life Sciences, 8(3), pp. 153–160. Available at: https://doi.org/10.21776/ub.jels.2018.008.03.04.
- Jalali, J. and Lebeau, T. (2021) “The role of microorganisms in mobilization and phytoextraction of rare earth elements: A review,” Frontiers in Environmental Science, 9, 688430. Available at: https://doi.org/10.3389/fenvs.2021.688430.
- Janda, J.M. and Abbott, S.L. (2007) “16S rRNA Gene Sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls,” Journal of Clinical Microbiology, 45(9), pp. 2761–2764. Available at: https://doi.org/10.1128/JCM.01228-07.
- Jorjani, E. and Sabzkoohi, H.A. (2022) “Gold leaching from ores using biogenic lixiviants – A review,” Current Research in Biotechnology, 4, pp. 10–20. Available at: https://doi.org/10.1016/j.crbiot.2021.12.003.
- Jun, Y.H. et al. (2020) “Bioleaching of kaolin with Bacillus cereus: Effects of bacteria source and concentration on iron removal,” Journal of Sustainability Science and Management, 15(4), pp. 91–99. Available at: https://doi.org/10.46754/jssm.2020.06.009.
- Kamaruzzaman, M.A. et al. (2019) “Potential of hexavalent chromium-resistant rhizosphere bacteria in promoting plant growth and hexavalent chromium reduction,” Journal of Environmental Biology, 40, pp. 427–433. Available at: https://doi.org/10.22438/jeb/40/3(SI)/Sp-03.
- Khezrinejad, N., Khodakaramian, G. and Shahryari, F. (2019) “Characterization of potential plant growth-promoting rhizobacteria isolated from sunflower (Helianthus annuus L.) in Iran,” Biologia Futura, 70(4), pp. 268–277. Available at: https://doi.org/10.1556/019.70.2019.30.
- Kumar, S. et al. (2018) “MEGA X: Molecular evolutionary genetics analysis across computing platforms,” Molecular Biology and Evolution, 35(6), pp. 1547–1549. Available at: https://doi.org/10.1093/molbev/msy096.
- Kurniawan, R., Hamim, C. and Satya, A. (2022) “Identification of potential phytoaccumulator plants from tailings area as a gold phytomining agent,” Journal of Ecological Engineering, 23(1). Available at: https://doi.org/10.12911/22998993/143978.
- Lao, C. et al. (2020) “Bacillus cereus, a geobiological marker for gold prospecting isolated from soil from the Jiaodong Gold Mine,” Journal of Geochemical Exploration, 215, 106563. Available at: https://doi.org/10.1016/j.gexplo.2020.106563.
- Liang, C.J., Li, J.Y. and Ma, C.J. (2014) “Review on cyanogenic bacteria for gold recovery from E-waste,” Advanced Materials Research, 878, pp. 355–367. Available at: https://doi.org/10.4028/www.scientific.net/AMR.878.355.
- Liu, X. et al. (2015) “Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth,” Environmental Pollution, 206, pp. 376–381. Available at: http://dx.doi.org/10.1016/j.envpol.2015.07.034.
- Manzoor, M. et al. (2019) “Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil,” Science of the Total Environment, 660, pp. 18–24. Available at: https://doi.org/10.1016/j.scitotenv.2019.01.013.
- Mesa-Marín, J. et al. (2018) “PGPR reduce root respiration and oxidative stress enhancing Spartina maritima root growth and heavy metal rhizoaccumulation,” Frontiers in Plant Science, 9, 1500. Available at: https://doi.org/10.3389/fpls.2018.01500.
- Mishra, T. and Pandey, V.C. (2019) “Phytoremediation of red mud deposits through natural succession,” in V.C. Pandey and K. Bauddh (eds.) Phytomanagement of polluted sites. Market opportunities in sustainable phytoremediation. Elsevier Inc., pp. 409–424. Available at: https://doi.org/10.1016/B978-0-12-813912-7.00016-8.
- Moore, J.A.M. et al. (2022) “Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects,” New Phytologist, pp. 1914–2139. Available at: https://doi.org/10.1111/nph.18010.
- Muyassaroh, S. and Salami, I.R.S. (2018) “Uji toksisitas sodium sianida (NaCN) pada beberapa spesies ikan air tawar: Review [The toxicity test of sodium cyanide (NaCN) to some species of freshwater fish: A review],” Jurnal Manusia dan Lingkungan, 25(1), pp. 1–6. Available at: https://jurnal.ugm.ac.id/JML/article/view/23117/29132 (Accessed: April 01, 2023).
- Nadeau, M.B., Laur, J. and Khasa, D.P. (2018) “Mycorrhizae and rhizobacteria on precambrian rocky gold mine tailings: I. Mine-adapted symbionts promote white spruce health and growth,” Frontiers in Plant Science, 9, 1267. Available at: https://doi.org/10.3389/fpls.2018.01267.
- Natarajan, G. and Ting, Y.P. (2015) “Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification,” Chemosphere, 136, pp. 232–238. Available at: https://doi.org/10.1016/j.chemosphere.2015.05.046.
- NCBI (no date a) Bacillus cereus. Taxonomy Browser. The National Center for Biotechnology Information. Available at: https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1396&lvl=3&keep=1&srchmo-de=1&unlock&mod=1&log_op=modifier_toggle (Accessed: December 04, 2023).
- NCBI (no date b) Pseudomonas aeruginosa M4. The National Center for Biotechnology Information. National Library of Medicine: Pseudomonas aeruginosa M4. Available at: https://www.ncbi.nlm.nih.gov/search/all/?term=Pseudomonas%20aeruginosa%20M4 (Accessed: December 04, 2023).
- NCBI (no date c) Stenotrophomonas geniculata. Taxonomy Browser. The National Center for Biotechnology Information. Available at: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=86188&lvl=3&keep=1&srchmode=1&un-lock&mod=1&log_op=modifier_toggle (Accessed: December 04, 2023).
- Pazos-Rojas, L.A. et al. (2018) “Desiccation-tolerant rhizobacteria maintain their plant growth promoting capability after experiencing extreme water stress,” SciFed Journal of Applied Microbiology, 1(1), pp. 1–13. Available at: https://doi.org/10.5281/zenodo.5068935.
- Phyo, A.K. et al. (2020) “Competitive growth of sulfate-reducing bacteria with bioleaching acidophiles for bioremediation of heap bioleaching residue,” International Journal of Environmental Research and Public Health, 17(8), 2715. Available at: https://doi.org/10.3390/ijerph17082715.
- Pramono, A. et al. (2012) “Peran rhizobakteri dalam fitoekstraksi logam berat kromium pada tanaman jagung [The role of rhizobacteria in phytoextraction of heavy metals],” Ecolab, 6(1), pp. 38–50. Available at: https://doi.org/10.20886/jklh.2012.6.1.38-50.
- Suja, F. et al. (2018) “Bioleaching for recovery of base and precious metals from electronic waste: A review,” International Journal of Civil Engineering and Technology, 9(13), pp. 1935–1943. Available at: https://iaeme.com/MasterAdmin/Journal_uploads/IJ-CIET/VOLUME_9_ISSUE_13/IJCIET_09_13_194.pdf (Accessed: September 23, 2023).
- USGS (2022) Mineral commodity summaries 2022: U.S. Geological Survey. Reston: United States Geological Survey. Available at: https://doi.org/10.3133/mcs2022.
- Yoon, J. et al. (2006) “Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site,” Science of the Total Environment, 368(2–3), pp. 456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016.
- Zulaika, E. et al. (2019) “The potential of Bacillus cereus S1 as an environmentally friendly bioaccumulator of gold nanoparticle waste,” IOP Conference Series: Materials Science and Engineering, 546(6), 062036. Available at: https://doi.org/10.1088/1757-899X/546/6/062036.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22c0c6df-4bc5-4e01-b4be-603d310e5575