PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Network virus propagation under planar cross-diffusion : spatiotemporal pattern analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An important security problem faced by information networks is virus transmission. The traditional ordinary differential equation models of virus propagation take less consideration of the impact of diffusion factors in computer networks. A few reaction-diffusion models proposed to simulate virus spreading only take into account self-diffusion in onedimensional space. As far as we know, there is not any model considering the crossdiffusion in two-dimensional space. In this paper, a novel virus transmission model with cross-diffusion in two-dimensional space is put forward. The introduction of crossdiffusion terms leads to diverse pattern dynamics and Turing instability in virus transmission, aspects that have not been previously studied. The sufficient conditions of Hopf bifurcation and Turing instability are given. Then, the amplitude equation near the critical value of Turing instability is constructed to identify various space-time patterns, such as spotted pattern, coexistence pattern and striped pattern. Finally, the numerical simulations show the correctness of theoretical analysis.
Rocznik
Strony
299--314
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Department of General Education, Wuxi University, 214105 Wuxi, China
autor
  • College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, 210023 Nanjing, China
  • Information Technology Institute, SAN University, 90-113 Łodź, Poland
autor
  • College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, 210023 Nanjing, China
autor
  • College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, 210023 Nanjing, China
autor
  • College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, 210023 Nanjing, China
Bibliografia
  • [1] J. Amador and J.R. Artalejo. Stochastic modeling of computer virus spreading with warning signals. J. Franklin Inst., 350:1112−1138, 2013.
  • [2] D. Avcl and F. Soyturk. Optimal control strategies for a computer network under virus threat. J. Comput. Appl. Math., 419:114740, 2023.
  • [3] A. Bissett and G. Shipton. Some human dimensions of computer virus creation and infection. Int. J. Hum-Comput. Stud., 52:899−913, 2000.
  • [4] J.Z. Cao, H.Y. Sun, P.M. Hao, and P.G. Wang. Bifurcation and turing instability for a predator-prey model with nonlinear reaction cross-diffusion. Appl. Math. Model., 89: 1663−1677, 2021.
  • [5] V. Dufiet and J. Boissonade. Dynamics of Turing pattern monolayers close to onset. Phys. Rev. E, 53: 4883−4892, 1996.
  • [6] B.X. Dai and G.X. Sun. Turing-Hopf bifurcation of a delayed diffusive predator-prey system with chemotaxis and fear effect. Appl. Math. Lett., 111: 106644, 2021.
  • [7] L.P. Feng, X.F. Liao, H.Q. Li, and Q. Han. Hopf bifurcation analysis of a delayed viral infection model in computer networks. Math. Comput. model, 56: 167−179, 2012.
  • [8] A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetika, 12: 30−39, 1972.
  • [9] Z.B. He and X.M. Wang. A spatial-temporal model for the malware propagation in MWSNs based on the reaction-diffusion equations. Inf. Manag., 13: 45−56, 2012.
  • [10] J.L. Hu, L.H Zhu, and M. Peng. Analysis of Turing patterns and amplitude equations in general forms under a reaction-diffusion rumor propagation system with Allee effect and time delay. Inf. Sci., 596: 501−519, 2022
  • [11] V. Kumar, N. Kumari, and R.P. Agarwal. Spatiotemporal dynamics and Turing patterns in an eco-epidemiological model with cannibalism. Results Control Optim., 9: 100183, 2022.
  • [12] M.H.R. Khouzani, S. Sarkar, and E. Altman. Optimal control of epidemic evolution. Proceedings IEEE INFOCOM, 38: 1683−1691, 2011.
  • [13] Y. Kuramoto and T. Tsuzuki. On the formation of disspipative structures in reaction-diffusion systems. Progr. Theoret. Phys., 54: 687−699, 1975.
  • [14] X.X. Li, Y.L. Cai, K. Wang, S.M. Fu, and W.M. Wang. Non-constant positive steady states of a host-parasite model with frequency and density-dependent transmissions. J. Franklin Inst., 357: 4392−4413, 2020.
  • [15] H.C. Liu, B. Ge, and J.H. Shen. Dynamics of periodic solutions in the reaction-diffusion glycolysis model: Mathematical mechanisms of Turing pattern formation. Appl. Math. Comput., 431: 127324, 2022.
  • [16] A.W. Li, Z. Jin, L. Li, and J.Z. Wang. Emergence of oscillatory turing patterns induced by cross diffusion in a predator-prey system. Int. J. Mod. Phys. B, 26: 1250193, 2012.
  • [17] Y.F. Luan, M. Xiao, Z. Wang, and J. Zhao. Hybrid control of Turing instability and Hopf bifurcation in CDK1-APC feedback systems with diffusion. J. Franklin Inst., 360: 12170−12197, 2023.
  • [18] J. Liu and Z.Z Zhang. Hopf bifurcation of a delayed worm model with two latent periods. Adv. Differ. Equ., 442: 1−27, 2019.
  • [19] E. Makinen. Comment on ‘A framework for modelling trojans and computer virus infection’. Comput. J., 44: 321−323, 2001.
  • [20] V. MadhuSudanan and R. Geetha. Dynamics of epidemic computer virus spreading model with delays. Wirel. Pers. Commun., 115: 2047−2061, 2020.
  • [21] Q.Y. Qu. Nonlinear Science and The Pattern Dynamics Introduction. Peking University Press, 2010.
  • [22] Z. Sabir, S.A. Bhat, and M.A.Z. Raja. A swarming neural network computing approach to solve the Zika virus model. Eng. Appl. Artif. Intel., 126: 106924, 2023.
  • [23] S.V. Stasenko, A.E. Hramov, and V.B. Kazantsev. Loss of neuron network coherence induced by virus-infected astrocytes: a model study. Sci. Rep., 13: 6401, 2023.
  • [24] J.E. Sawyer, M.C. Kernan, D.E. Conlon, and H. Garland. Responses to the michelangelo computer virus threat: The role of information sources and risk homeostasis theory. J. Appl. Soc. Psychol., 29: 23−51, 1999.
  • [25] G. Sun, Z. Wu, Z. Jin, and Z. Wang. Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn., 83: 1−819, 2016.
  • [26] J.P. Tripathi, S. Abbas, G.Q. Sun, D. Jana, and C.H. Wang. Interaction between prey and mutually interfering predator in prey reserve habitat: Pattern formation and the Turing-Hopf bifurcation. J. Franklin Inst., 355: 7466−7489, 2018.
  • [27] W.M. Wang, X.Y. Gao, Y.L. Cai, H.B. Shi, and S.M. Fu. Turing patterns in a diffusive epidemic model with saturated infection force. J. Franklin Inst., 355: 7226−7245, 2018.
  • [28] X.M. Wang, Z.B. He, X.Q. Zhao, C. Lin, Y. Pan, and Z.P. Cai. Reaction-diffusion modeling of mal-ware propagation in mobile wireless sensor networks. Sci. China Inf. Sci., 56: 1−18, 2013.
  • [29] J.C. Wierman and D.J. Marchette. Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction. Comput. Stat. Data Anal., 45: 3−23,2004.
  • [30] H. Zhang, R.K. Upadhyay, G.Y. Liu, and Z.Z. Zhang. Hopf bifurcation and optimal control of a delayed malware propagation model on mobile wireless sensor networks. Results Phys., 41: 105926, 2022.
  • [31] P.T. Zhang, W. Wang, and Y. Tan. A malware detection model based on a negative selection algorithm with penalty factor. Sci. China Inf. Sci., 53: 2461−2471, 2010.
  • [32] Z. Zhang and H. Yang. Dynamical analysis of a viral infection model with delays in computer networks. Math. Probl. Eng., 2015: 280856, 2015.
  • [33] L.H. Zhu, H.Y. Zhao, and X.M. Wang. Stability and bifurcation analysis in a delayed reaction-diffusion malware propagation model. Comput. Math. Appl., 69: 852−875, 2015.
  • [34] L.H. Zhu, H.Y. Zhao, and X.M. Wang. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control. Commun. Nonlinear Sci. Numer. Simul., 22: 747−768, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22b60206-a818-472e-b083-3c383def671d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.