PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Modeling of skin tissue heating using the generalized dual phase-lag equation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns the numerical modeling of skin tissue heating. To describe the analyzed process the system of three generalized dual phase-lag equations corresponding to the successive layers of the skin: epidermis, dermis and sub-cutaneous region is applied. On the surfaces between the layers the ideal thermal contact is assumed, on the skin surface the Neumann condition describing the external heating of tissue can be accepted, and on the remaining surfaces the no-flux condition is taken into account. Initial temperature of the tissue and the blood is known. The problem is solved using the explicit scheme of finite difference method. In the final part of the paper the results of computations are shown.
Rocznik
Strony
417--437
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Institute of Computational Mechanics and Engineering Silesian University of Technology 44-100 Gliwice, Konarskiego 18a, Poland
autor
  • Institute of Computational Mechanics and Engineering Silesian University of Technology 44-100 Gliwice, Konarskiego 18a, Poland
  • Institute of Computational Mechanics and Engineering Silesian University of Technology 44-100 Gliwice, Konarskiego 18a, Poland
Bibliografia
  • 1. H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of Applied Physiology, l, 93–122, 1948.
  • 2. D.A. Torvi, J.D. Dale, A finite element model of skin subjected to a flash fire, Journal of Biomechanical Engineering, 116, 250–255, 1994.
  • 3. M. Jamil, E.Y.K. Ng, Ranking of parameters in bioheat transfer using Taguchi analysis, International Journal of Thermal Sciences, 63, 15–21, 2013.
  • 4. B. Mochnacki, E. Majchrzak, Sensitivity of the skin tissue on the activity of external heat sources, CMES: Computer Modeling in Engineering and Sciences, 4, 3–4, 431–438, 2003.
  • 5. B. Mochnacki, A. Piasecka-Belkhayat, Numerical modeling of skin tissue heating using the interval finite difference method, MCB: Molecular & Cellular Biomechanics, 10, 3, 233–244, 2013.
  • 6. M. Jasiński, Investigation of tissue thermal damage process with application of direct sensitivity method, MCB: Molecular & Cellular Biomechanics, 10, 3, 183–199, 2013.
  • 7. E. Majchrzak, B. Mochnacki, M. Dziewoński, M. Jasiński, Numerical modelling of hyperthermia and hypothermia processes, Computational Materials Science, 268–270, 257–262, 2011.
  • 8. E. Majchrzak, B. Mochnacki, M. Jasiński, Numerical modelling of bioheat transfer in multi-layer skin tissue domain subjected to a flash fire, Computational Fluid and Solid Mechanics, 1–2, 1766–1770, 2003.
  • 9. A. Malek, G. Abbasi, Optimal control solution for Pennes’ equation using strongly continuous semigroup, Kybernetika, 50, 4, 530–543, 2014.
  • 10. J. Zhou, J.K. Chen, Y. Zhang, Dual phase lag effects on thermal damage to biological tissues caused by laser irradiation, Computers in Biology and Medicine, 39, 286–293, 2009.
  • 11. J. Zhou, Y. Zhang, J.K. Chen, An axisymmetric dual-phase lag bio-heat model for laser heating of living tissues, International Journal of Thermal Sciences, 48, 8, 1477–1485, 2009.
  • 12. Kuo-Chi Liu, Han-Taw Chen, Investigation for the dual phase lag behavior of bioheat transfer, International Journal of Thermal Sciences, 49, 1138–1146, 2010.
  • 13. E. Majchrzak, Numerical solution of dual phase lag model of bioheat transfer using the general boundary element method, CMES: Computer Modeling in Engineering & Sciences, 69, 1, 43–60, 2010.
  • 14. N. Afrin, Y. Zhang, J.K. Chen, Thermal lagging in living biological tissue based on non-equilibrium heat transfer in a three-carrier system, International Journal of Heat and Mass Transfer, 54, 2419–2426, 2011.
  • 15. A. Malek, Z.K. Bojdi, P.N.N. Golbarg, Solving fully three-dimensional microscale dual phase lag problem using mixed-collocation, finite difference discretization, Journal of Heat Transfer, 134, 9, 094501–094506, 2012.
  • 16. E. Majchrzak, Ł. Turchan, The general boundary element method for 3D dual-phase lag model of bioheat transfer, Engineering Analysis with Boundary Elements, 50, 76–82, 2015.
  • 17. W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure, Journal of Heat Transfer, 112, 555–560, 1990
  • 18. K. Mitra, S. Kumar, A. Vedavarz, M.K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat, Journal of Heat Transfer, 117, 568–573, 1995.
  • 19. P.J. Antaki, New interpretation of non-Fourier heat conduction in processed meat, Journal of Heat Transfer, 127, 189–193, 2005.
  • 20. N. Afrin, J. Zhou, Y. Zhang, D.Y. Tzou, J.K. Chen, Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model, Numerical Heat Transfer, Part A: Applications, 61, 7, 483–501, 2012.
  • 21. A.R.A. Khaled, K. Vafai, The role of porous media in modeling of flow and heat transfer in biological tissues, International Journal of Heat and Mass Transfer, 46, 4989–5003, 2003.
  • 22. A. Nakayama, F. Kuwahara, A general bioheat transfer model based on the theory of porous media, International Journal of Heat and Mass Transfer, 51, 3190–3199, 2008.
  • 23. P. Yuan, Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy, International Journal of Heat and Mass Transfer, 52, 1734–1740, 2009.
  • 24. N. Afrin, Y. Zhang, J.K. Chen, Thermal lagging in living biological tissue based on nonequilibrium heat transfer between tissue, arterial and venous bloods, International Journal of Heat and Mass Transfer, 54, 2419–2426, 2011.
  • 25. Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, International Journal of Heat and Mass Transfer, 52, 4829–4834, 2009.
  • 26. E. Majchrzak, Ł. Turchan, Numerical analysis of tissue heating using the bioheat transfer porous model, Computer Assisted Methods in Engineering and Science, 20, 2, 123–131, 2013.
  • 27. E. Majchrzak, Ł. Turchan, A numerical analysis of heating tissue using the two-temperature model, Advanced Computational Methods and Experiments in Heat Transfer XIII, WIT Transactions on Engineering Sciences, 83, 477–488, 2014.
  • 28. E. Majchrzak, Ł. Turchan, Numerical analysis of tissue heating using the generalized dual phase lag model, Recent Advances in Computational Mechanics, Łodygowski, Rakowski & Litewka (eds.), Taylor & Francis Group, London, 355–362, 2014.
  • 29. W.J. Minkowycz, A. Haji-Sheikh, K. Vafai, On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number, International Journal of Heat Mass Transfer, 42, 18, 3373–3385, 1999.
  • 30. Z. Domański, M. Ciesielski, B. Mochnacki, Application of control volume method using the Voronoi tessellation in numerical modelling of solidification process, Current Themes in Engineering Science 2009, Book Series: AIP Conference Proceedings, 1220, 17–26, 2010.
  • 31. M. Dziewoński, B. Mochnacki, R. Szopa, Sensitivity of biological tissue freezing process on the changes of cryoprobe cooling rate, Book Series: Mechanika, Kaunas University of Technology, 82–87, 2011.
  • 32. B. Mochnacki, M. Ciesielski, Numerical model of thermal processes in domain of thin film subjected to a cyclic external heat flux, THERMEC 2011, PTS 1-4 Book Series: Materials Science Forum, 706–709, 1460–1465, 2012.
  • 33. B. Mochnacki, J.S. Suchy, Numerical methods in computations of foundry processes, PFTA, Cracow, 1995.
  • 34. J.M. McDonough, I. Kunadian, R.R. Kumar, T. Yang, An alternative discretization and solution procedure for the dual phase-lag equation, Journal of Computational Physics, 219, 1, 163–171, 2006.
  • 35. A.K. Cousins, On the Nusselt number in heat transfer between multiple parallel blood vessels, Journal of Biomechanical Engineering, 119, 1, 127–129, 1997.
  • 36. Ł. Turchan, Numerical analysis of artificial hyperthermia using different models of bioheat transfer, Doctoral Thesis, Silesian University of Technology, Gliwice, 2014.
  • 37. S.A. Sapareto, W.C. Dewey, Thermal dose determination in cancer therapy, International Journal of Radiation Oncology Biology Physics, 10, 6, 787–800, 1984.
  • 38. E. Majchrzak, Ł. Turchan, Numerical estimation of thermal dose during hyperthermia treatment using the BEM, Mechanika 2011: Proceedings of the 16th International Conference, Book Series: Mechanika, Kaunas University of Technology, 215–219, 2011.
  • 39. W. Dai, H. Wang, P.M. Jordan, R.E. Mickens, A. Bejan, A mathematical model for skin burn injury induced by radiation heating, International Journal of Heat and Mass Transfer, 51, 5497–5510, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22b5d949-098f-4aa8-b84b-588c6f484d54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.