Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the thermal instability of a three-dimensional boundary layer axisymmetric stagnation point flow towards a heated horizontal rotating disk is considered. A large number of works have been done on stability analysis. However, they did not check the thermal stability of the non-parallel-flow in the face of small disturbances that occur in the vicinity of the heated rotating disk. The governing equations of the basic flow are reduced to three coupled nonlinear partial differ-ential equations, and solved numerically with the fourth-order Runge-Kutta method. Thermal stability is examined by making use of linear stability theory based on the decomposition of the normal mode of Görtler-Hammerlin. The resulting eigenvalue problem is solved numerically using a pseudo-spectral method based on the expansion of Laguerre’s polyno-mials. The obtained results are discussed in detail through multiple configurations. As the main result, for large Prandtl numbers (Pr), the rotation disk parameter (Ω) has a destabilizing effect while for small Pr (around the unity) it tends to stabilize the basic flow. It was found that as the disk radius r→0, the flow is linearly stable, and the disturbances grow rapidly away from the stagnation point. For low values of Pr, the flow becomes more stable, and strong thermal gradients are necessary to destabilize it. However, an increase in Pr leads to a significant expansion of the instability region.
Czasopismo
Rocznik
Tom
Strony
61--72
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Université de Bejaia, Faculté de Technologie, Laboratoire de Mécanique, Matériaux et Energétique (L2ME), 06000 Bejaia, Algeria
autor
- Université de Bejaia, Faculté de Technologie, Laboratoire de Mécanique, Matériaux et Energétique (L2ME), 06000 Bejaia, Algeria
autor
- Université de Bejaia, Faculté de Technologie, Laboratoire de Mécanique, Matériaux et Energétique (L2ME), 06000 Bejaia, Algeria
Bibliografia
- [1] Shevchuk, I.V. (2009). Convective Heat and Mass Transfer in Rotating Disk Systems. Springer, Berlin - Heidelberg. doi: 10.1007/978-3-642-00718-7
- [2] Evans, G., & Greif, R. (1987). A numerical model of the flow and heat transfer in a rotating disk chemical vapor deposition reactor. Journal of Heat Transfer, 109(4), 928‒935. doi: 10.1115/ 1.3248205
- [3] Evans, G.H., & Greif, R. (1988). Forced flow near a heated rotat-ing disk: A similarity solution. Numerical Heat Transfer, 14(3), 373‒387. doi: 10.1080/10407788808913650
- [4] Hussain, Z., Garrett, S.J., & Stephen, S.O. (2011). The instability of the boundary layer over a disk rotating in an enforced axial flow. Physics of Fluids, 23, 114108. doi: 10.1063/ 1.3662133.
- [5] Kármán, Th.V. (1921). Über laminare und turbulente Reibung. ZAMM ‒ Journal of Applied Mathematics and Mechanics, 1(4), 233‒252 (in German). doi: 10.1002/zamm.19210010401
- [6] Griffiths, P.T. (2015). Flow of a generalised Newtonian fluid due to a rotating disk. Journal of Non-Newtonian Fluid Mechanics, 221, 9‒17. doi: 10.1016/j.jnnfm.2015.03.008
- [7] Khan, M., Salahuddin, T., & Stephen, S.O. (2020). Thermo-phys-ical characteristics of liquids and gases near a rotating disk. Chaos Solitons & Fractals, 141, 110304. doi: 10.1016/j.chaos. 2020.110304
- [8] Usman, M., Mehmood, A., & Weigand, B. (2020). Heat transfer from a non-isothermal rotating rough disk subjected to forced flow. International Communication in Heat and Mass Transfer, 110, 104395. doi:10.1016/j.icheatmasstransfer.2019. 104395
- [9] Hannah, D.M. (1947). Forced flow against a rotating disc. British Aeronautical Research Council Reports & Memoranda, 2772.
- [10] Sarkar, S., & Sahoo, B. (2021). Oblique stagnation flow towards a rotating disc. European Journal of Mechanics - B/Fluids, 85, 82‒89. doi: 10.1016/j.euromechflu.2020.08.009
- [11] Wang, C.Y. (2008). Off-centered stagnation flow towards a ro-tating disc. International Journal of Engineering Science, 46(4), 391‒396. doi: 10.1016/j.ijengsci.2008.01.014
- [12] Heydari, M., Loghmani, G.B., Rashidi, M.M., & Hosseini, S.M. (2015). A numerical study for off-centered stagnation flow to-wards a rotating disc. Propulsion and Power Research, 4(3), 169‒178. doi: 10.1016/j.jppr.2015.07.004
- [13] Amaouche, M., & Boukari, D. (2003). Influence of thermal con-vection on non-orthogonal stagnation point flow. International Journal of Thermal Sciences, 42(3), 303‒310. doi: 10.1016/ S1290-0729(02)00031-5
- [14] Amaouche, M., Naït-Bouda, F., & Sadat, H. (2005). The onset of thermal instability of a two-dimensional hydromagnetic stagna-tion point flow. International Journal of Heat and Mass Transfer, 48(21-22), 4435‒4445. doi:10.1016/j.ijheatmasstransfer.2005. 05.003
- [15] Naït Bouda, F., Mendil, F., Sadaoui, D., Mansouri, K., & Amaouche, M. (2015). Instability of opposing double diffusive convection in 2D boundary layer sta gnation point flow. Interna-tional Journal of Thermal Sciences, 98, 192‒201. doi: 10.1016/ j.ijthermalsci.2015.07.014
- [16] Mendil, F., Naït-Bouda, F., & Sadaoui, D. (2015). Effect of tem-perature dependent viscosity on the thermal instability of two-di-mensional stagnation point flow. Mechanics & Industry, 16, 506. doi: 10.1051/meca/2015031
- [17] Mittal, S. (2010). Stability of flow past a cylinder: Energy budget of eigenmodes. International Journal for Numerical Methods in Fluids, 63, 533‒547. doi: 10.1002/fld.2084
- [18] Amaouche, M., Naït-Bouda, F., & Sadat, H. (2007). Oblique ax-isymmetric stagnation flows in magnetohydrodynamics. Physics of Fluids, 19, 114106. doi: 10.1063/1.2804957
- [19] Mouloud, S., Nait-Bouda, F., Sadaoui, D., & Mendil F. (2019). The onset of instabilities in mixed convection boundary layer flow over a heated horizontal circular cylinder. Journal of Thermal Science and Engineering Applications, 11(5), 51002. doi: 10.1115/1.4042586
- [20] Kobayashi, R., Kohama, Y., & Takamadate, Ch. (1980). Spiral vortices in boundary layer transition regime on a rotating disk. Acta Mechanica, 35, 71‒82. doi: 10.1007/BF01190058
- [21] Malik, M.R., Wilkinson, S.P., & Orszag, S.A. (1981). Instability and transition in rotating disk flow. American Institute of Aero-nautics and Astronautics, 19(9), 1131‒1138. doi: 10.2514/ 3.7849
- [22] Lingwood, R.J. (1995). Absolute instability of the boundary layer on a rotating disk. Journal of Fluid Mechanics, 299, 17‒33. doi: 10.1017/S0022112095003405
- [23] Turkyilmazoglu, M., & Gajjar, S.J.B. (2001). An analytic ap-proach for calculating absolutely unstable inviscid modes of the boundary layer on a rotating disk. Studies in Applied Mathemat-ics, 106(4), 419‒435. doi.org/10.1111/1467-9590. 001733
- [24] Turkyilmazoglu, M. (2019). Direct contact melting due to a per-meable rotating disk. Physics of Fluids, 31, 023603. doi: 10.1063/1.5086724
- [25] Turkyilmazoglu, M. (2010). Heat and mass transfer on the MHD fluid flow due to a porous rotating disk with hall current and var-iable properties. Journal of Heat and Mass Transfer, 133(2), 021701. doi: 10.1115/1.4002634
- [26] Miller, R., Griffiths, P., Hussain, Z., & Garrett, S.J. (2020). On the stability of a heated rotating-disk boundary layer in a temper-ature-dependent viscosity fluid. Physics of Fluids, 32, 024105. doi: 10.1063/1.5129220
- [27] Sharma, A., Mahapatra, P.S., Manna, N.K., Ghosh, K., Wahi, P., & Mukhopadhyay, A. (2016). Thermal instability-driven multi-ple solutions in a grooved channel. Numerical Heat Transfer, Part A: Applications, 70(7), 776‒790. doi: 10.1080/ 10407782. 2016.1192936
- [28] Roşca, N.C., & Pop, I. (2017). Axisymmetric rotational stagna-tion point flow impinging radially a permeable stretching/shrink-ing surface in a nanofluid using Tiwari and Das model. Scientific Reports, 7, 40299. doi: 10.1038/srep40299
- [29] Healey, J.J. (2004). On the relation between the viscous and in-viscid absolute instabilities of the rotating-disk boundary layer. Journal of Fluid Mechanics, 511, 179‒199. doi: 10.1017/ S0022112004009565
- [30] Jasmine, H.A., & Gajjar, J.S.B. (2005). Absolute and convective instabilities in the incompressible boundary layer on a rotating disk with temperature-dependent viscosity. International Journal of Heat and Mass Transfer, 48(5), 1022‒1037. doi: 10.1016/ j.ijheatmasstransfer.2004.07.036
- [31] Wiesche, S., & Helcig, C. (2022). Effect of heating on the stabil-ity of the three-dimensional boundary layer flow over a rotating disk. E3S Web of Conferences, 345, 02007. doi: 10.1051/ e3sconf/202234502007
- [32] Lee, Y.-Y., Hwang, Y.-K., & Lee, K.-W. (2003). The flow insta-bility over the infinite rotating disk. KSME International Journal, 17(9), 1388‒1395. doi: 10.1007/BF02982480
- [33] Huerre, P., & Monkewitz, P.A. (1990). Local and global instabil-ities in spatially developing flows. Annual Review of Fluid Me-chanics, 22, 473‒537. doi: 10.1146/annurev.fl.22.010190. 002353
- [34] Appelquist, E., Schlatter, P., Alfredsson, P.H., & Lingwood, R.J. (2015). Global linear instability of the rotating-disk flow investi-gated through simulations. Journal of Fluid Mechanics, 765, 612‒631. doi: 10.1017/jfm.2015.2
- [35] Mustafa, M. (2017). MHD nanofluid flow over a rotating disk with prtial slip effects: Buongiorno-model. International Journal of Heat and Mass Transfer, 108(B), 1910‒1916. doi: 10.1016/ j.ijheatmasstransfer.2017.01.064
- [36] Görtler, H. (1955). Dreidimensionale Instabilität der ebenen Staupunktströmung gegenüber wirbelartigen Störungen. In 50 Jahre Grenzschichtforschung, H. Görtler, W. Tollmein (Eds.), (pp. 304–314), Vieweg und Teubner Verlag, Wiesbaden (in Ger-man). doi: 10.1007/978-3-663-20219-6_30
- [37] Hämmerlin, G. (1955). Zur Instabilitätstheorie der ebenen Stau-punktströmung. In 50 Jahre Grenzschichtforschung, H. Görtler, W. Tollmein (Eds.), (pp. 315–327), Vieweg und Teubner Verlag, Wiesbaden (in German). doi: 10.1007/978-3-663-20219-6_31.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22b5a197-406e-4e3b-ac77-cb70f0946b3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.