Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study was carried out to predict the zooplankton density in the Cip reservoir (Elazığ) with an artificial neural network, using some water quality parameters. The plankton samples were collected monthly from Cip Reservoir in 2021- 2022, using a standard plankton net from three stations. Water temperature, dissolved oxygen, pH, electrical conductivity, secchi disk, alkalinity, total nitrogen and total phosphorus were measured. The actual values of zooplankton density and results obtained from the artificial neural networks were compared. Mean absolute percent error (MAPE) values were calculated with actual values and ANNs values. ANNs values were determined to be close to the real data. MAPE percentage value at the first station was determined as 1.143 for Rotifer, 0.118 for Cladocera, and 0.141 for Copepoda. The MAPE percentage value at the second station was determined as 0.941 for Rotifer, 0.377 for Cladocera, and 0.185 for Copepoda. The MAPE percentage value at the third station was determined as 0.342 for Rotifer, 0.557 for Cladocera, and 0.301 for Copepoda. In the present study, it has been seen that artificial neural networks with a learning feature are successful in predicting zooplankton densities in an aquatic environment. It can be concluded from the study that ANNs are a powerful tool for understanding their relationships with the environment.
Czasopismo
Rocznik
Tom
Strony
502--515
Opis fizyczny
Bibliogr. 44 poz., fot., tab., wykr.
Twórcy
Bibliografia
- [1]. Aguilar Ibarra, A., Gevrey, M., Park, Y S., Lim, P., & Lek, S. (2003). Modelling the factors that influence fish guilds composition using a back-propagation network: Assessment of metrics for indices of biotic integrity. Ecological Modelling, 160, 281-290. https://doi.org/10.1016/S0304-3800(02)00259-4
- [2]. Anderson, D., & McNeill, G. (1992). Artificial neural networks technology. Kaman Sciences Corporation, 258(6), 1-83.
- [3]. Amoros, C., Roux, A. L., Reygrobellet, J. L., Bravard, J. P., & Pautou, G. (1987). A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers, 1, 17-36. https:// doi.org/10.1002/rrr.3450010104
- [4]. Aoki, I., & Komatsu, T. (1997). Analysis and prediction of the fluctuation of sardine abundance using a neural network. Oceanologica Acta, 20(1), 81-88.
- [5]. Attayde, J. L., & Bozelli, R. L. (1998). Assessing the indicator properties of zooplankton as-semblages to disturbance gradients by canonical correspondence analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1789-1797. https://doi.org/10.1139/f98-033
- [6]. Banse, K. (1995). Zooplankton: Pivotal role in the control of ocean production. ICES Journal of Marine Science, 52 (3-4), 265-277. https://doi.org/10.1016/1054-3139(95)80043-3
- [7]. Benzer, S., Benzer, R., & Gunal Caglan, A. (2017). Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanli Dam Lake. Biologia, 72, 527-535. https://doi.org/10.1515/biolog-2017-0052
- [8]. Benzer, S., & Benzer, R. (2018). New perspectives for predicting growth properties of crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan Journal of Zoology, 50(1), 35-45. https://doi.org/10.17582/journal. pjz/2018.50.1.35.45
- [9]. Bulut, H., & Saler, S. (2018). Seasonal Variations in Zooplankton Community of an Aquatic Ecosystem at Susurluk Basin (Balikesir-Turkey). Fres. Env. Bul., 27(7), 2530-2535.
- [10]. Bulut, H., & Saler, S. (2019). Effect of physicochemical parameters on zooplankton at a freshwater body of Euphrates Basin (Elazig-Turkey). Cellular and Molecular Biology, 65(1), 8-13. https://doi.org/10.14715/cmb/2019.65.1.2 PMID:30782288
- [11]. Bulut, H., & Saler, S. (2020). Monthly distribution of zooplankton in Kapikaya Reservoir, Turkey. Maejo International Journal of Science and Technology, 14 (1), 1-10.
- [12]. Burns, C. W., & Galbraith, L. M. (2007). Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research, 29(3), 127-139. https://doi.org/10.1093/ plankt/fbm001
- [13]. Deivanai, K., Arunprasath, S., Rajan, M. K., & Baskaran, S. (2004). Biodiversity of phyto and zooplankton in relation to water quality parameters in a sewage polluted pond at Ellayirampannai, Virudhunagar District. In: The proceedings of National Symposium on biodiversity resources management and sustainable use, organized by the center for biodiversity and Forest studies, Madurai Kamaraj University. Madurai.
- [14]. Dini, M. L., & Carpenter, S. R. (1992). Fish predators, food availability and diel vertical migration in Daphnia. Journal of Plankton Research, 14, 359-377. https://doi.org/10.1093/ plankt/14.3.359
- [15]. Haykin, S. (1994). Neural Networks, A Comprehensive Foundation. MacMillan College Publishing Comp.
- [16]. Hoang, H., Recknagel, F., Marshall, J., & Choy, S. (2001). Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia). Ecological Modelling, 195, 195-206. https://doi.org/10.1016/S0304-3800(01)00306-4
- [17]. Horne, A. J., & Goldman, C. R. (1994). Limnology. McGraw-Hill.
- [18]. Ismail, A. H., & Adnan, A. A. (2016). Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Tropical Life Sciences Research, 27(supp1), 31-38. https://doi.org/10.21315/tlsr2016.27.3.5 PMID:27965738
- [19]. Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting fnancial and economic time series. Neurocomputing, 10(3), 215-236. https://doi.org/10.1016/0925-2312(95)00039-9
- [20]. Karjalainen, J., Holopainen, A. L., & Huttunen, P. (1996). Spatial patterns and relationships between phytoplankton, zooplankton and water quality in the Saimaa Lake system. Hydrobiologia. https://doi.org/10.1007/978-94-009-1655-5_42
- [21]. Karul, C., Soyupak, S., Cilesiz, A. F., Akbay, N., & Germen, E. (2000). Case studies on the use of neural networks in eutrophication modeling. Ecological Modelling, 134, 145-152. https://doi.org/10.1016/S0304-3800(00)00360-4
- [22]. Krenker, A., Bester, J., & Kos, A. (2011). Artificial Neural Networks-Methodological Advances and Biomedical Applications. InTech, 5, 3-18.
- [23]. Legendre, L., & Demers, S. (1984). Towards dynamic biological oceanography and limnology. Canadian Journal of Fisheries and Aquatic Sciences, 41,2-19. https://doi.org/10.1139/f84-001
- [24]. Lewis, C. D. (1982). Industrial and business forecasting methods. Butterworths.
- [25]. Loverde Oliveira, S. M., Huszar, V. L. M., Mazzeo, N., & Scheffer, M. (2009). Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems (New York, N.Y.), 12, 807-819. https://doi.org/10.1007/s10021-009-9258-0
- [26]. Maravelias, C. D., & Reid, D. G. (1997). Identifying the effects of oceanographic features and zooplankton on prespawning herring abundance using generalized additive models. Marine Ecology Progress Series, 147, 1-9. https://doi.org/10.3354/meps147001
- [27]. Mastrorillo, S., Lek, S., Dauba, F., & Belaud, A. (1997). The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biology, 38, 237-246. https://doi.org/10.1046/j.1365-2427.1997.00209.x
- [28]. Moss, B., Beklioglu, M., Carvalho, L., Kilinc, S., McGowan, S., & Stephen, D. (1997). Vertically-challenged limnology; contrasts between deep and shallow lakes. Springer. https://doi.org/10.1007/978-94-011-5648-6_27
- [29]. Muylaert, K., Declerck, S., Van Wichelen, J., De Meester, L., & Vyverman, W. (2006). An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica, 36(2), 69-78. https://doi.org/10.1016/j.limno.2005.12.003
- [30]. Olden, J. D., & Jackson, D. A. (2002). Illuminating the “Black Box”: A Randomization Approach for Understanding Variable Contributions in Artifical Neural Networks. Ecological Modelling, 154, 135-150. https://doi.org/10.1016/S0304-3800(02)00064-9
- [31]. Ozcan, E. I., & Serdar, O. (2018). Artifical neural networks as new alternative method to estimating some population parameters of tigris loach (Oxynoemacheilus tigris (Heckel, 1843)) in the Karasu River, Turkey. Fres. Env. Bul., 27(12B), 9840-9850.
- [32]. Ozcan, E. I., & Serdar, O. (2019). Evaluation of a New Computer Method ANNs and Traditional Methods LWRs and VBGF in the Calculation of Some Growth Parameters of Two Cyprinid Species. Fres. Env. Bul., 28(10), 7644-7654.
- [33]. Ozcan, E. I. (2019). Artificial Neural Networks A New Statistical Approach Method in Length-Weight Relationships of Alburnus mossulensis in Murat River Palu-Elazig Turkey. Applied Ecology and Environmental Research, 17, 10253-10266. https://doi.org/10.15666/aeer/1705_1025310266
- [34]. Pinto-Coelho, R. (1998). Effects of eutrophication on seasonal patterns of mesozooplankton in a tropical reservoir: A 4-year study in Pampulha Lake, Brazil. Freshwater Biology, 40, 159-173. https://doi.org/10.1046/j.1365-2427.1998.00327.x
- [35]. Pinel-Alloul, B., Mathot, G., Verreault, G., & Vigneault, Y. (1990). Zooplankton species associations in Quebec Lakes: Variation with abiotic factors, including natural and anthropogenic acidification. Canadian Journal of Fisheries and Aquatic Sciences, 47, 110-121. https://doi.org/10.1139/ f90-011
- [36]. Reyjol, Y., Lim, P., Belaud, A., & Lek, S. (2001). Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France). Ecological Modelling, 146, 131-142. https://doi.org/10.1016/S0304-3800(01)00301-5
- [37]. Ryding, S. O., & Rast, W. (1989). The Control of Eutrophicayion of Lakes and Reservoirs. Man and Biosphere Series, Parthenon Publication Group.
- [38]. Saler, S. (2017). Diversity and abundance of zooplankton in Medik Reservoir of Turkey. Maejo International Journal of Science and Technology, 11 (2), 126-132.
- [39]. Saler, S. (1995). Cip Baraj Golu (Elazig) Rotifera Faunasinin Taksonomik Yonden Incelenmesi [In Turkish]. Firat UniversitesiFen ve Muhendislik Bilimleri Dergisi, 12, 329-337.
- [40]. Schleiter, I. M., Borchardt, D., Wagner, R., Dapper, T., Schmidt, K. D., Schmidt, H. H., & Werne, R. H. (1999). Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural network. Ecological Modelling, 120, 271-286. https://doi.org/10.1016/S0304-3800(99)00108-8
- [41]. Sharda, R., & Patil, R. B. (1992). Connectionist approach to time series prediction: An empirical test. Journal of Intelligent Manufacturing, 3, 317-323. https://doi.org/10.1007/ BF01577272
- [42]. Sousa, W., Attayde, J. L., Rocha, E. D. S., & Eskinazi-Sant Anna, E. M. (2008). The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern. Brazil. Journal of Plankton Research, 30(6), 699-708. https://doi.org/10.1093/plankt/ fbn032
- [43]. Sagiroglu, S., Besdok, E., & Erler, M. (2003). Muhendislikte yapay zeka uygulamalari I, Yapay Sinir Aglari, Ufuk Kitap Kirtasiye-Yayincilik Tic. Ltd.Sti. (In Turkish).
- [44]. Tanyolac, J. (2009). Limnoloji. Hatiboglu Basimevi. (In Turkish) URL. 2023 https://tr.wikipedia.org/wiki/Cip_Baraj%C4%B1 [Accessed 20 May 2023].
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22994b47-53e8-4aa4-94ec-60857aa2a6e9