Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The research was attempted to mimic the locomotion of the salamander, which is found to be one of the main animals from an evolutionary point of view. The design of the limb and body was started with the parametric studies of pneumatic network (Pneu-Net). Pneu-Net is a pneumatically operated soft actuator that bends when compressed fluid is passed inside the chamber. Finite Element Analysis software, ANSYS, was used to evaluate the height of the chamber, number of chambers and the gap between chambers for both limb and body of the soft mechanism. The parameters were decided based on the force generated by the soft actuators. The assembly of the salamander robot was then exported to MATLAB for simulating the locomotion of the robot in a physical environment. Sine-based controller was used to simulate the robot model and the fastest locomotion of the salamander robot was identified at 1 Hz frequency, 0.3 second of signal delay for limb actuator and negative π phase difference for every contralateral side of the limbs. Shin-Etsu KE-1603, a hyper elastic material, was used to build the salamander robot and a series of experiments were conducted to record the bending angle, the respective generated force in soft actuators and the gait speed of the robot. The developed salamander robot was able to walk at 0.06774 m/s, following an almost identical pattern to the simulation.
Rocznik
Tom
Strony
art. no. e137055
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Faculty of Engineering, UCSI University, Kuala Lumpur, Malaysia
autor
- Faculty of Engineering, UCSI University, Kuala Lumpur, Malaysia
autor
- Center for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, Kulala Lumpur, Malaysia
autor
- Faculty of Engineering, UCSI University, Kuala Lumpur, Malaysia
autor
- Faculty of Engineering, UCSI University, Kuala Lumpur, Malaysia
autor
- Center for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, Kulala Lumpur, Malaysia
Bibliografia
- [1] A.J. Ijspeert, “Central pattern generators for locomotion control in animals and robots: A review”, Neural Netw. 21, 642–653 (2008).
- [2] K. Karakasiliotis, N. Schilling, J.C. Auke, and J. Ijspeert, “Where are we in understanding salamander locomotion : biological and robotic perspectives on kinematics”, Biol. Cybern. 107, 529–544 (2012).
- [3] J. Cabelguen, C. Bourcier-Lucas, and R. Dubuc, “Bimodal Locomotion Elicited by Electrical Stimulation of the Midbrain in the Salamander Notophthalmus viridescens”, J. Neurosci. 23(6), 2434–2439 (2003).
- [4] J.L. Edwards, “The Evolution of Terrestrial Locomotion”, in Major Patterns in Vertebrate Evolution, pp. 1961–1962, Edition. no 1955, Plenum Press, New York, 1977.
- [5] A. Ross, “Hindlimb Kinematics During Terrestrial Locomotion in a Salamander (Dicamptodon Tenebrosus)”, J. Exp. Biol. 193(1), 255–83 (1994).
- [6] A.J. Ijspeert, G.A. Ascoli, and D.N. Kennedy, “Simulation and Robotics Studies of Salamander Locomotion”, Neuroinformatics 3, 171–195 (2005).
- [7] K. Karakasiliotis and A.J. Ijspeert, “Analysis of the terrestrial locomotion of a salamander robot”, in The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 5015–5020.
- [8] A.J. Ijspeert, A. Crespi, D. Ryczko, and J. Cabelguen, “From Swi mming to Walking with a Spinal Cord Model”, Science 315, 1416–1421 (2007).
- [9] A. Bicanski et al., “Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics”, Biol. Cybern. 107, 545–564 (2013).
- [10] Q. Liu, H. Yang, J. Zhang, and J. Wang, “A new model of the spinal locomotor networks of a salamander and its properties”, Biol. Cybern. 112(4), 369‒385 (2018).
- [11] Q. Liu, Y. Zhang, J. Wang, H. Yang, and L. Hong, “Modeling of the neural mechanism underlying the terrestrial turning of the salamander”, Biol. Cybern. 114, 317–336 (2020).
- [12] C. Zhou, M. Tan, N. Gu, Z. Cao, S. Wang, and L. Wang, “The Design and Implementation of a Biomimetic Robot Fish”, Int. J. Adv. Robot. Syst. 5(2), 185–192 (2008).
- [13] A.A.M. Faudzi, M.R.M. Razif, G. Endo, H. Nabae, and K. Suzumori, “Soft-Amphibious Robot using Thin and Soft McKibben Actuator”, in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 981–986.
- [14] N. Ili, M.R. Muhammad Razif, A.M. Faudzi, E. Natarajan, K. Iwata, and K. Suzumori, “3-D finite-element analysis of fiber-reinforced soft bending actuator for finger flexion”, 2013 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics Mechatronics Hum. Wellbeing, AIM 2013, 2013, pp. 128–133.
- [15] M.R.M. Razif, A.A.M. Faudzi, M. Bavandi, N.A.M. Nordin, E. Natarajan, and O. Yaakob, “Two chambers soft actuator realizing robotic gymnotiform swi mmers fin”, 2014 IEEE Int. Conf. Robot. Biomimetics, IEEE ROBIO 2014, 2014, pp. 15–20.
- [16] N. Elango and A.A.M. Faudzi, “A review article: investigations on soft materials for soft robot manipulations”, Int. J. Adv. Manuf. Technol. 80, 1027–1037 (2015).
- [17] Y. Nishioka, M. Uesu, H. Tsuboi, S. Kawamura, T. Yasuda, and M. Yamano, “Development of a pneumatic soft actuator with pleated inflatable structures”, Adv. Robot. 31(14), 753–762 (2017).
- [18] Z. Wang, P. Polygerinos, J.T.B. Overvelde, K.C. Galloway, K. Bertoldi, and C.J. Walsh, “Interaction Forces of Soft Fiber Reinforced Bending Actuators”, IEEE/ASME Trans. Mechatron. 22(2), 717–727 (2017).
- [19] A. Ning, M. Li, and J. Zhou, “Modeling and understanding locomotion of pneumatic soft robots”, Soft Mater. 16(3), 151–159 (2018).
- [20] W. Hu, W. Li, and G. Alici, “3D Printed Helical Soft Pneumatic Actuators”, in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2018, pp. 950–955.
- [21] S. Furukawa, S. Wakimoto, T. Kanda, and H. Hagihara, “A Soft Master-Slave Robot Mimicking Octopus Arm Structure Using Thin Artificial Muscles and Wire Encoders”, Actuators 8(40), 1–13 (2019).
- [22] V. Cacucciolo, J. Shintake, Y. Kuwajima, S. Maeda, D. Floreano, and H. Shea, “Stretchable pumps for soft machines”, Nature 572, 516–519 (2019).
- [23] M.A. Robertson, O.C. Kara, and J. Paik, “Soft pneumatic actuator-driven origami-inspired modular robotic ‘pneumagami’”, Int. J. Robot. Res. 40(1), 72–85 (2020).
- [24] E. Natarajan, “Evaluation of a Suitable Material for Soft Actuator Through Experiments and FE Simulations”, Int. J. Manuf. Mater. Mech. Eng. 10(2), 64–76 (2020).
- [25] B. Mosadegh, P. Polygerinos, Ch. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, and G.M. Whitesides, “Pneumatic Networks for Soft Robotics that Actuate Rapidly”, Adv. Funct. Mater. 2014(24), 2163–2170 (2014).
- [26] T. Wang, L. Ge, and G. Gu, “Progra mmable design of soft pneunet actuators with oblique chambers can generate coupled bending and twisting motions”, Sens. Actuator A-Phys. 217, 131–138 (2018).
- [27] P. Boyraz, G. Runge, and A. Raatz, “An Overview of Novel Actuators for Soft Robotics”, Actuators 7(48), 1–21 (2018).
- [28] M. Manns, J. Morales, and P. Frohn, “Additive manufacturing of silicon based PneuNets as soft robotic actuators”, Procedia CIRP 72, 328‒333 (2018).
- [29] Y. Sun, Q. Zhang, X. Chen and H. Chen, “An Optimum Design Method of Pneu-Net Actuators for Trajectory Matching Utilizing a Bending Model and GA”, Math. Probl. Eng. 2019, 6721897 (2019), doi: 10.1155/2019/6721897.
- [30] T. Zielinska, “Autonomous walking machines–discussion of the prototyping problems”, Bull. Pol. Acad. Sci. Tech. Sci. 58(3), 443‒451 (2010), doi: 10.2478/v10175-010-0042-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22974a32-fec7-4cde-8c67-f27874b0663e