PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of exercise rehabilitation on hemodynamic performance after carotid artery stenting: a numerical study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high in-stent restenosis rate and thrombosis have compromised clinical benefits after vascular stent placement. Exercise rehabilitation after stenting emerges as a promising and practical therapeutic strategy to improve the clinical performance of this therapy, although it remains controversial. The present study aimed to explore the impact of exercise training on hemodynamic performance after vascular stent implantation. Different 3-dimensional computational models based on the patient-specific carotids were constructed to calculate hemodynamic parameters, including flow velocity, time-averaged wall shear (TAWSS), oscillatory shear index (OSI) and relative residence time (RRT). The results demonstrated that exercise training increased TAWSS but decreased OSI and RRT in some cases after the intervention, and high-intensity exercise further suppressed the adverse blood flow. However, exercise training remarkably reduced TAWSS and elevated OSI and RRT in patients with mild stenosis at upstream of stented segment. Additionally, we discovered that the hemodynamic environment change induced by exercise training was not significant compared to the stent position in some cases. Exercise had a less beneficial impact on the disturbed blood flow after the distal common carotid artery (CCA) stenting. These findings highlighted that exercise-induced hemodynamic changes differ under different conditions. The exercise training for the intervention patients should only be performed after a comprehensive vascular function assessment.
Rocznik
Strony
3--13
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
autor
  • School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
autor
  • Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
autor
  • School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
autor
  • Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Center of Vascular Surgery, Beijing, China.
autor
  • School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
autor
  • Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
Bibliografia
  • [1] AZHIM A., AKIOKA K., AKUTAGAWA M., HIRAO Y., YOSHIZAKI K., OBARA S. et al., Effect of gender on blood flow velocities and blood pressure: role of body weight and height, Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 2007, 967–970.
  • [2] BROTT T.G., HOBSON R.W. 2nd, HOWARD G., ROUBIN G.S., CLARK W.M., BROOKS W. et al., Stenting versus endarterectomy for treatment of carotid-artery stenosis, N. Engl. J. Med., 2010, 363, 11–23.
  • [3] CARNELLI D., PENNATI G., VILLA T., BAGLIONI L., REIMERS B., MIGLIAVACCA F., Mechanical properties of open-cell, selfexpandable shape memory alloy carotid stents, Artif. Organs, 2011, 35, 74–80.
  • [4] CHEN Z., YU H., SHI Y., ZHU M., WANG Y., HU X. et al., Vascular Remodelling Relates to an Elevated Oscillatory Shear Index and Relative Residence Time in Spontaneously Hypertensive Rats, Sci. Rep., 2017, 7, 2007.
  • [5] CHENG C., TEMPEL D., VAN HAPEREN R., VAN DER BAAN A., GROSVELD F., DAEMEN M.J. et al., Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress, Circulation, 2006, 113, 2744–2753.
  • [6] CHESNUTT J.K., HAN H.C., Simulation of the microscopic process during initiation of stent thrombosis, Comput. Biol. Med., 2015, 56, 182–191.
  • [7] DAVIGNON J., GANZ P., Role of endothelial dysfunction in atherosclerosis, Circulation, 2004, 109, III27–32.
  • [8] DE SANTIS G., CONTI M., TRACHET B., DE SCHRYVER T., DE BEULE M., DEGROOTE J. et al., Haemodynamic impact of stent-vessel (mal)apposition following carotid artery stenting: mind the gaps!, Comput. Methods Biomech. Biomed. Engin., 2013, 16, 648–59.
  • [9] DO BRITO VALENTE A.F., JASPERS R.T., WUST R.C., Regular physical exercise mediates the immune response in atherosclerosis, Exerc. Immunol. Rev., 2021, 27, 42–53.
  • [10] FAN Z., LIU X., ZHANG Y., ZHANG N., YE X., DENG X., Hemodynamic Impact of Stenting on Carotid Bifurcation: A Potential Role of the Stented Segment and External Carotid Artery, Comput. Math. Methods Med., 2021, 7604532.
  • [11] FRIEDMAN M.H., Hemodynamics and the arterial wall, J. Biomech. Eng., 1981, 103, 171–212.
  • [12] FU C., WANG H., WEI Q., HE C., ZHANG C., Effects of rehabilitation exercise on coronary artery after percutaneous coronary intervention in patients with coronary heart disease: a systematic review and meta-analysis, Disabil. Rehabil., 2019, 41, 2881–2887.
  • [13] GALLO D., STEINMAN D.A., MORBIDUCCI U., An insight into the mechanistic role of the common carotid artery on the hemodynamics at the carotid bifurcation, Ann. Biomed. Eng., 2015, 43, 68–81.
  • [14] GORI T., POLIMENI A., INDOLFI C., RABER L., ADRIAENSSENS T., MUNZEL T., Predictors of stent thrombosis and their implications for clinical practice, Nat. Rev. Cardiol., 2019, 16, 243–256.
  • [15] GREEN D.J., MAIORANA A., O’DRISCOLL G., TAYLOR R., Effect of exercise training on endothelium-derived nitric oxide function in humans, J. Physiol., 2004, 561, 1–25.
  • [16] IIDA O., NANTO S., UEMATSU M., MOROZUMI T., KOTANI J., AWATA M. et al., Effect of exercise on frequency of stent fracture in the superficial femoral artery, Am. J. Cardiol., 2006, 98, 272–274.
  • [17] JAUREGUIZAR K.V., VICENTE-CAMPOS D., BAUTISTA L.R., DE LA PEÑA C.H., GÓMEZ M.J.A., RUEDA M.J.C. et al., Effect of High-Intensity Interval Versus Continuous Exercise Training on Functional Capacity and Quality of Life in Patients With Coronary Artery Disease, Journal of Cardiopulmonary Rehabilitation and Prevention, 2016, 36, 96–105.
  • [18] BOYD J., BUICK J.M., Analysis of changes in velocity profiles in a two dimensional carotid artery geometry in response to resting and exercising velocity waveforms using the Lattice Boltzmann Method, 5th WSEAS Int Conf on Fluid Mechanics (FLUIDS ’08) Acapulco, Mexico, January 25–27, 2008.
  • [19] AOYAMA K., EMOTO T., AKUTAGAWA M., MASUDA M.S.M., OBARA S., YOSHIZAKI K. et al., Evaluating the Atherosclerosis based on the Blood Flow Velocity Waveform of Common Carotid Artery, Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics. 2012.
  • [20] KESTIN A.S., ELLIS P.A., BARNARD M.R., ERRICHETTI A., ROSNER B.A., MICHELSON A.D., Effect of strenuous exercise on platelet activation state and reactivity, Circulation, 1993, 88, 1502–1511.
  • [21] KIM C., CHOI H.E., LIM M.H., Effect of High Interval Training in Acute Myocardial Infarction Patients with Drug-Eluting Stent, American Journal of Physical Medicine and Rehabilitation, 2015, 94, 879–886.
  • [22] KOZIN S., CRETU M., KOZINA Z., CHERNOZUB A., RYEPKO O., SHEPELENKO T. et al., Application of closed kinematic chain exercises with eccentric and strength exercises for the shoulder injuries prevention in student rock climbers: a randomized controlled trial, Acta Bioeng. Biomech., 2021, 23, 159–168.
  • [23] KU D.N., GIDDENS D.P., ZARINS C.K., GLAGOV S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, 1985, 5, 293–302.
  • [24] LALLY C., DOLAN F., PRENDERGAST P.J., Cardiovascular stent design and vessel stresses: a finite element analysis, J. Biomech., 2005, 38, 1574–1581.
  • [25] LAMANNA A., MAINGARD J., BARRAS C.D., KOK H.K., HANDELMAN G., CHANDRA R.V. et al., Carotid artery stenting: Current state of evidence and future directions, Acta Neurol. Scand., 2019, 139, 318–333.
  • [26] LEE J.Y., AHN J.M., PARK D.W., KANG S.J., KIM Y.H., LEE S.W. et al., Impact of exercise-based cardiac rehabilitation on long-term clinical outcomes in patients with left main coronary artery stenosis, Eur. J. Prev. Cardiol., 2016, 23, 1804–1813.
  • [27] LEE S.W., ANTIGA L., STEINMAN D.A., Correlations among indicators of disturbed flow at the normal carotid bifurcation, J. Biomech. Eng., 2009, 131, 061013.
  • [28] LI Z., CHEN C., CHEN Y.U., WANG Z., JIANG W., TIAN X., Numerical insights into the determinants of stent performance for the management of aneurysm with a visceral vessel attached, Acta Bioeng. Biomech., 2021, 23, 41–53.
  • [29] LIANG D.K., YANG D.Z., QI M., WANG W.Q., Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery, Int. J. Cardiol., 2005, 104, 314–318.
  • [30] MAIORANA A., O’DRISCOLL G., TAYLOR R., GREEN D., Exercise and the nitric oxide vasodilator system, Sports Med., 2003, 33, 1013–1035.
  • [31] MOORE J.E. JR., MAIER S.E., KU D.N., BOESIGER P., Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements, J. Appl. Physiol., 1985, 1994, 76, 1520–1527.
  • [32] MORBIDUCCI U., GALLO D., MASSAI D., PONZINI R., DERIU M.A., ANTIGA L. et al., On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation, J. Biomech., 2011, 44, 2427–2438.
  • [33] NAPOLI C., PAOLISSO G., CASAMASSIMI A., AL-OMRAN M., BARBIERI M., SOMMESE L. et al., Effects of nitric oxide on cell proliferation: novel insights, J. Am. Coll. Cardiol., 2013, 62, 89–95.
  • [34] ORMEZZANO O., POLACK B., VANZETTO G., SAHNOUN M., MACHECOURT J., Platelet hyperactivity during exercise leading to iterative coronary stent thrombosis: clinical implications, J. Thromb. Thrombolysis, 2010, 30, 105–108.
  • [35] ORMEZZANO O., POLACK B., VANZETTO GR., SAHNOUN M., MACHECOURT J., Platelet hyperactivity during exercise leading to iterative coronary stent thrombosis: clinical implications, J. Thromb. Thrombolysis, 2009, 105–108.
  • [36] PALMEFORS H., DUTTA ROY S., RUNDQVIST B., BORJESSON M., The effect of physical activity or exercise on key biomarkers in atherosclerosis – a systematic review, Atherosclerosis, 2014, 235, 150–161.
  • [37] PLEVA L., KUKLA P., HLINOMAZ O., Treatment of coronary in-stent restenosis: a systematic review, J. Geriatr. Cardiol., 2018, 15, 173–184.
  • [38] RAYZ V.L., BOUSSEL L., GE L., LEACH J.R., MARTIN A.J., LAWTON M.T. et al., Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms, Ann. Biomed. Eng., 2010, 38, 3058–3069.
  • [39] REYNOLDS M.R., APRUZZESE P., GALPER B.Z., MURPHY T.P., HIRSCH A.T., CUTLIP D.E. et al., Cost-effectiveness of supervised exercise, stenting, and optimal medical care for claudication: results from the Claudication: Exercise Versus Endoluminal Revascularization (CLEVER) trial, J. Am. Heart Assoc., 2014, 3, e001233.
  • [40] ROSFORS S., HALLERSTAM S., JENSEN-URSTAD K., ZETTERLING M., CARLSTROM C., Relationship between intima-media thickness in the common carotid artery and atherosclerosis in the carotid bifurcation, Stroke, 1998, 29, 1378–1382.
  • [41] TADA Y., WADA K., SHIMADA K., MAKINO H., LIANG E.I., MURAKAMI S. et al., Roles of hypertension in the rupture of intracranial aneurysms, Stroke, 2014, 45, 579–586.
  • [42] WANG Z., SUN A., FAN Y., DENG X., Comparative study of Newtonian and non-Newtonian simulations of drug transport in a model drug-eluting stent, Biorheology, 2012, 49, 249–259.
  • [43] YANG J., CAO R.Y., GAO R., MI Q., DAI Q., ZHU F., Physical Exercise Is a Potential "Medicine" for Atherosclerosis, Adv. Exp. Med. Biol., 2017, 999, 269–286.
  • [44] ZAGO A.S., ZANESCO A., Nitric oxide, cardiovascular disease and physical exercise, Arq. Bras. Cardiol., 2006, 87, e264–70.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2292b062-f313-4ff1-b2b3-6ae0597de9c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.