PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of an embedded FPGA-based data acquisition system dedicated to zero power reactor noise experiments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An embedded time interval data acquisition system (DAS) is developed for zero power reactor (ZPR) noise experiments. The system is capable of measuring the correlation or probability distribution of a random process. The design is totally implemented on a single Field Programmable Gate Array (FPGA). The architecture is tested on different FPGA platforms with different speed grades and hardware resources. Generic experimental values for time resolution and inter-event dead time of the system are 2.22 ns and 6.67 ns respectively. The DAS can record around 48-bit x 790 kS/s utilizing its built-in fast memory. The system can measure very long time intervals due to its 48-bit timing structure design. As the architecture can work on a typical FPGA, this is a low cost experimental tool and needs little time to be established. In addition, revisions are easily possible through its reprogramming capability. The performance of the system is checked and verified experimentally.
Rocznik
Strony
433--446
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Physics Department, Amir-Kabir University of Technology, Hafez Avenue Tehran, Iran
  • Radiation Application Research School, Nuclear Science & Technology Research Institute (NSRTI) Atomic Energy Organization of Iran, Tehran, Iran
autor
  • Radiation Application Research School, Nuclear Science & Technology Research Institute (NSRTI) Atomic Energy Organization of Iran, Tehran, Iran
autor
  • Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran, Iran
Bibliografia
  • [1] Thie, J.A., (1963). Reactor Noise, Rowman and Littlefield Inc., New York.
  • [2] Thie, J.A., (1981). Power Reactor Noise, American Nuclear Society, Illinois.
  • [3] Uhrig, R.E., (1970). Random Noise Techniques in Nuclear Reactor Systems, The Ronald Press Company, New York.
  • [4] Williams, M.M.R., (1974). Random Process in Nuclear Reactors, Pergamom Press.
  • [5] Orndroff, J.D., (1957). Prompt Neutron Periods of Metal Critical Assemblies, Nucl. Sci. Eng, 2:450-460.
  • [6] Kuramoto, R.Y.R., Santos, A.D., Jerez, R., Diniz, R., (2007). Kinetic Parameters Determination through Power Spectral Densities Measurements using Pulse-Type Detectors in the IPEN/MB-01 Research Reactor, International Nuclear Atlantic Conference, Santos (Brazil).
  • [7] Kitamura, Y., Matoba, M., Misavita, T., Unesaki, H., Shiroya, S., (1999). Reactor Noise Experiments by using Acquisition System for Time Series Data of Pulse Train, J. Nucl. Sci. Technol., 36; 8: 653-660.
  • [8] Kang, K., Zhao, L., Zhou, J., Liu, S., An, Q., (2013). A 128-channel high precision time measurement module, Metrol. Meas. Syst., Vol. XX, No. 2, 275-286.
  • [9] Song, J., An, Q., Liu, S., (2006). A High-Resolution Time-to-Digital Converter Implemented in Field-Programmable-Gate-Arrays, IEEE Transactions on Nuclear Science, VOL. 53, NO. 1.
  • [10] Wang, H., Zhang, M., Liu, J., (2011). High-Resolution Short Time Interval Measurement System Implemented in a Single Fpga Chip. Chinese Sci Bull, 56:1285-1290, doi: 10.1007/s 11434-011 -4421-3
  • [11] Ugur, C., Bayer, E., Kurz, N., Traxler, M., (2012). A 16 Channel High Resolution (<11 Ps RMS) Time-To-Digital Converter in a Field Programmable Gate Array, Topical workshop on electronics for particle physics, Vienna, Austria.
  • [12] Mathworks, (2011). MATLAB Reference Guide. The Math Works Inc.
  • [13] Kalisz, J., (2004). Review of Methods for Time Interval Measurements with Picosecond Resolution, Metrologia, 41: 17-32.
  • [14] Zieliński, M., (2009). Review Of Single-Stage Time-Interval Measurement Modules Implemented in FPGA Devices, Metrol. Meas. Syst., 16; 4: 641–648.
  • [15] Henzler, S., (2010). Time-to-Digital Converters, Springer.
  • [16] Carbone, P., Kiaei, S., Xu, F., (2014). Design, Modelling and Testing of Data Converters, Springer.
  • [17] NIOSII Software Developer’s Handbook Version 11.1, (2011). ALTERA Corporation.
  • [18] Zieliński, M., Kowalski, M., Frankowski, R., Chaberski, C., Grzelak, S., Wydźgowski, L., (2009). Accumulated Jitter Measurement of Standard Clock Oscillators, Metrol. Meas. Syst., Vol. XVI, No. 2, 259-266.
  • [19] Artyukh, Y., Boole, E., (2011). Jitter Measurement on the Basis of High-Precision Event Timer, Metrol.Meas. Syst., Vol. XVIII, No. 3, 453-460.
  • [20] STRATIXIII DSP Development Kit Reference Manual, (2008). ALTERA Corporation.
  • [21] QUARTUSIIHandbook Version 11.1, (2011). ALTERA Corporation.
  • [22] SOPC Builder User Guide, (2010). ALTERA Corporation.
  • [23] Arkani, M., Khalafi, H., Vosoughi, N., (2013). A Flexible Multichannel Digital Random Pulse Generator Based on FPGA, World Journal of Nuclear Science and Technology, Vol. 3 No. 4, 109-116. doi: 10.4236/wjnst.2013.34019.
  • [24] Arkani, M., Khalafi, H., Arkani, M., (2013). Efficient dead time correction of G-M counters using feed forward artificial neural network, Nukluinika, 58(2): 317-321.
  • [25] Arkani, M., Khalafi, H., Arkani, M., (2013). An Improved Formula for Dead Time Correction of GM Detectors, Nukluinika, 58(4): 533-536.
  • [26] Knoll, G.F., (1999). Radiation Detection and Measurement, John Wiley & Sons, Inc.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22928ac7-0df5-430a-8f64-a5bf02087b57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.