PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chloride-induced corrosion modelling of cracked reinforced SHCC

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Corrosion of steel bars in concrete is usually a slow electrochemical process which may need a long time before damage becomes visible in the reinforced concrete (RC). However, cracks provide quick access to chloride, oxygen and water into concrete and accelerate the corrosion process. Corrosion modelling is essential for structural design for a particular life span, or to inform decisions on repair of RC structures to reach or extend their service life. This paper reports experimental research results of accelerated chloride exposure of cracked reinforced strain hardening cement-based composite (R/SHCC) specimens for a period of one year. Based on these novel results, a corrosion model is proposed which incorporates crack width, crack spacing, free chloride content and cover depth. The model is shown to capture the corrosion results of cracked R/SHCC reported in this paper.
Rocznik
Strony
734--742
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
  • Department of Civil Engineering, Stellenbosch University, South Africa
autor
  • Department of Civil Engineering, Stellenbosch University, South Africa
Bibliografia
  • [1] M.B. Otieno, M.G. Alexander, H.D. Beushausen, Corrosion in cracked and uncracked concrete – influence of crack width, concrete quality and crack reopening, Magazine of Concrete Research 62 (6) (2010) 393–404.
  • [2] C.Q. Li, S.T. Yang, Prediction of concrete crack width under combined reinforcement corrosion and applied load, Journal of Engineering Mechanics 137 (11) (2011) 722–731.
  • [3] T. Liu, R.W. Weyers, Modelling the dynamic corrosion process in chloride contaminated concrete structures, Cement and Concrete Research 28 (3) (1998) 365–379.
  • [4] T.U. Mohammed, N. Otsuki, M. Hisada, T. Shibat, Effect of crack width and bar types on corrosion of steel in concrete, Journal of Materials in Civil Engineering 13 (2001) 194–201.
  • [5] J.L. Granju, S. Balouch, Corrosion of steel fibre reinforced concrete from the cracks, Cement and Concrete Research 35 (3) (2005) 572–577.
  • [6] T. Vidal, A. Castel, R. Francois, Analyzing crack width to predict corrosion in reinforced concrete, Cement and Concrete Research 34 (1) (2004) 165–174.
  • [7] C. Arya, F.K. Ofori-Darko, Influence of crack frequency on reinforcement corrosion in concrete, Cement and Concrete Research 26 (3) (1996) 345–353.
  • [8] S.E. Hussain, A. Rasheeduzzafar, A.S. Al-Musallam, Al- Gahtani, Factors affecting threshold chloride for reinforcement corrosion in concrete, Cement and Concrete Research 25 (1995) 1543–1555.
  • [9] Q. Huang, Influence of Cracks on Chloride-induced Corrosion in Reinforced Concrete Structures, (M.Sc. thesis), Chalmers University of Technology, Sweden, 2006.
  • [10] C. Alonso, C. Andrade, M. Castellote, P. Castro, Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar, Cement and Concrete Research 30 (2000) 1047–1055.
  • [11] P. Lambert, C.L. Page, P.R.W. Vassie, Investigation of reinforcement corrosion. Electrochemical monitoring of steel in chloride contaminated concrete, Materials and Structures 24 (1991) 351–358.
  • [12] O.A. Kayyali, M.N. Haque, The ratio of Cl/OH in chloride contaminated concrete. A most important criterion, Magazine of Concrete Research 47 (1995) 235–242.
  • [13] M. Thomas, Chloride thresholds in marine concrete, Cement and Concrete Research 26 (4) (1996) 513–519.
  • [14] F.H. Wittmann, P. Wang, P. Zhang, Z. Tie-Jun, F. Betzung, Capillary absorption and chloride penetration in neat and water repellent SHCC under imposed strain, in: Proceeding for 2nd International Conference on Strain Hardening Cementitious Composites, Brazil, (2011) 165–172.
  • [15] J.A. Gonzalez, A. Cobo, M.N. Gonzalez, S. Feliu, On-site determination of corrosion rate in reinforced concrete structures by use of galvanostatic pulses, Corrosion Science 43 (2001) 611–625.
  • [16] C. Andrade, C. Alonso, Test methods for on-site corrosion rate of steel reinforcing in concrete by means of the polarization resistance method, Materials and Structures 37 (9) (2004) 623–643.
  • [17] S.C. Paul, G.P.A.G. van Zijl, Crack formation and chloride induced corrosion in reinforced strain hardening cement-based composites (R/SHCC), Journal of Advanced Concrete Technology 12 (2014) 340–351.
  • [18] M. Sahmaran, V.C. Li, C. Andrade, Corrosion resistance performance of steel reinforced engineered cementitious composite beams, ACI Materials Journal 105 (3) (2008) 604– 611.
  • [19] K. Kobayashi, T. Iizuka, H. Kurachi, K. Rokugo, Corrosion protection performance of high performance fibre reinforced cement composites as a repair material, Cement and Concrete Composites 32 (2010) 411–420.
  • [20] H. Mihashi, S.F.U. Ahmed, A. Kobayakawa, Corrosion of reinforcing steel in fibre reinforced cementitious composites, Journal of Advanced Concrete Technology 9 (2) (2011) 159–167.
  • [21] J. Broomfield, Corrosion of Steel in Concrete: Understanding, Investigating and Repair, Taylor & Francis, New York, 2007.
  • [22] S. Miyazato, Y. Hiraishi, Durability against steel corrosion of HPFRCC with bending cracks, Journal of Advanced Concrete Technology 11 (2013) 135–144.
  • [23] C. Alonso, C. Andrade, J.A. Gonzalez, Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types, Cement and Concrete Research 8 (5) (1988) 687–698.
  • [24] RILEM TC 178-TMC, Testing and modelling chloride penetration in concrete. Analysis of water soluble chloride content in concrete, Materials and Structures 35 (2002) 586–588.
  • [25] RILEM TC 178-TMC, Testing and modelling chloride penetration in concrete. Analysis of total chloride content in concrete, Materials and Structures 35 (2002) 583–585.
  • [26] G. Fischer, V.C. Li, Effect of fibre reinforcement on the response of structural members, in: Proc. of the Fracture Mechanics of Concrete and Concrete Structures, Vail, USA, (2004) 831–838.
  • [27] P. Schiessl, M. Raupach, Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete, ACI Materials Journal 94 (1) (1997) 56–61.
  • [28] S.C. Paul, The Role of Cracks and Chlorides in Corrosion of Reinforced Strain Hardening Cement-based Composite (R/SHCC), (Ph.D. thesis), Stellenbosch University, South Africa, 2015, , Available at http://scholar.sun.ac.za.
  • [29] A. Djerbi, S. Bonnet, A. Khelid, V. Baroghel-bouny, Influence of traversing crack on chloride diffusion into concrete, Cement and Concrete Research 38 (2008) 877–883.
  • [30] W.P. Boshoff, F. Altmann, C.J. Adendorff, V. Mechtcherine, A new approach for modelling the ingress of deleterious materials in cracked strain hardening cement-based composites, Materials and Structures (2015), http://dx.doi. org/10.1617/s11527-015-0649-8.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22909981-4f8c-4fe4-9818-c21cc75d39fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.