PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nondestructive characterization of elastic modulus of APS Ni–5Al/10hBN coating on stainless steel 304 under high temperature

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The failure mechanisms of coatings, under high thermo-mechanical loads, can be examined through finite element simulations. However, mechanical properties such as Young’s modulus and Poisson’s ratio are necessary to achieve an accurate model. In this study, nickel–aluminum with hexagonal boron nitride (NiAl/hBN) is deposited on stainless steel 304 substrate using atmospheric plasma spray technique. The effect of the hydrogen content in the plasma-formed gas on the microstructure, hardness, and porosity of the deposited layers is examined. Also, the mechanical properties of the coating are measured at ambient temperatures using non-contact laser ultrasound technique. Results indicated that the flow rate of hydrogen has a major impact on the coating structure and elastic properties. The inhomogeneity in the coating can be minimized by decreasing the hydrogen flow rate. The coating Young’s modulus was increased at room temperature, which slowly decreased while increase in atmospheric temperature. The behavior of Young’s modulus at high temperature causes decrease in flexural strength. In addition, the back calculations are well agreed with experimental results.
Rocznik
Strony
116--130
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
  • Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
  • Additive Manufacturing Center for Mass Customization Production, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
autor
  • Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
  • Additive Manufacturing Center for Mass Customization Production, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
Bibliografia
  • [1] Poliarus O, Morgiel J, Umanskyi O, Pomorska M, Bobrowski P, Szczerba MJ, Kostenko O. Microstructure and wear of thermal sprayed composite NiAl-based coatings. Arch Civ Mech Eng. 2019;19:1095–103.
  • [2] Davis JR. Handbook of thermal spray technology. Cleveland: ASM International; 2004.
  • [3] Feitosa FRP, Gomes RM, Silva MMR, De Lima SJG, Dubois JM. Effect of oxygen/fuel ratio on the microstructure and properties of HVOF sprayed Al59Cu25.5Fe12.5B3 quasicrystalline coatings. Surface Coat Technol. 2018;353(2018):171–8.
  • [4] Oksa M, Turunen E, Suhonen T, Varis T, Hannula SM. Optimization and characterization of high velocity oxy-fuel sprayed coatings: techniques, materials, and applications. Coatings. 2011;1:17–52.
  • [5] Liu L, Xiao J-K, Wei X, Ren Y, Zhang G, Zhang C. Effects of temperature and atmosphere on microstructure and tribological properties of plasma sprayed FeCrBSi coatings. J Alloy Compd. 2018;753:586–94.
  • [6] Jeyaprakash N, Yang C-H, Duraiselvam M, Sivasankaran S. Comparative study of laser melting and pre-placed Ni–20% Cr alloying over nodular iron surface. Arch Civ Mech Eng. 2020;20:20. https://doi.org/10.1007/s4345 2-020-00030 -4.
  • [7] Soltani Reza, Heydarzadeh-Sohi Mahmoud, Ansari Mohammad, Afsari Fereshteh, Valefi Zia. Effect of APS process parameters on high-temperature wear behavior of nickel–graphite abradable seal coatings. Surf Coat Technol. 2017;321:403–8.
  • [8] Lamuta C, Di Girolamo G, Pagnotta L. Microstructural, mechanical and tribological properties of nanostructured YSZ coatings produced with different APS process parameters. Ceram Int. 2015;41:8904–14.
  • [9] Claes L, Jäger A, Johannesmann S, Webersen M, Kupnik M, Henning B. acoustic material characterization of additively manufactured components. In: Proceedings sensor, AMA conferences 2017, Nurnberg, Germany. pp 605–610.
  • [10] Ma XQ, Mizutani Y, Takemoto M. Laser-induced surface acoustic waves for evaluation of elastic stiffness of plasma sprayed materials. J Mater Sci. 2001;36:5633–41.
  • [11] Chu YC, Rokhlt SI. Determination of macro- and Micro-mechanical and interfacial elastic properties of composites from Ultrasonic Data. J Acoust Soc Am. 1992;92:920–31.
  • [12] Aussel JD, Monchalin JP. Precision laser-ultrasonic velocity measurement and elastic constant determination. Ultrasonics. 1989;27:165–77.
  • [13] Zhang XR, Li GH, Zhang T, Gan CM, Zhang LD. Investigation of sound properties of nano-structured pure and composite ceramics. Acta Phys Sin. 1999;8:234–7.
  • [14] Webersen M, Johannesmann S, Claes L, Henning B. Characterization of continuous-fiber reinforced thermoplastics using thermo acoustically excited ultrasonic lamb waves. In: IEEE international ultrasonics symposium proceedings, 2016.
  • [15] Liu H, Lavernia EJ, Rangel RH. Modelling of molten droplet impingement of a non-flat surface. Acta Metall Mater. 1995;43:2053.
  • [16] Lu X-L, Liu X-B, Yu P-C, Qiao S-J, Zhai Y-J, Wang M-D, Chen Y, Xu D. Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding. Opt Laser Technol. 2016;78:87–94.
  • [17] Safai S, Herman H. Microstructural investigation of plasmasprayed aluminum coatings. Thin Solid Films. 1977;45:295.
  • [18] Sampath S, Jiang XY, Matejicek J, Leger AC, Vardelle A. Progress in thermal barrier coatings. Mater Sci Eng A. 1999;272:181.
  • [19] Yin Z, Tao S, Zhou X, Ding C. Preparation and characterization of plasma-sprayed Al/Al2O3 composite coating. Mater Sci Eng A. 2008;480:580.
  • [20] Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H. Tribological research and design for engineering systems. Wear. 1999;232:199.
  • [21] Du L, Zhang W, Liu W, Zhang J. Preparation and characterization of plasma sprayed Ni3Al-hBN composite coating. Surface Coat Technol. 2010;205:2419–24.
  • [22] Hsiao WT, Su CY, Huang TS, Liao WH. The microstructural characteristics and mechanical properties of Ni–Al/h-BN coatings deposited using plasma spraying. J Alloy Compd. 2011;509:8239–45.
  • [23] Liu XQ, Zheng YG, Chang XC, Hou WL, Wang JQ, Tang Z, Burgess A. Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying. J Alloys Compd. 2009;484:300–7.
  • [24] Yeh C-H, Jeyaprakash N, Yang C-H. Temperature dependent elastic modulus of HVOF sprayed Ni–5%Al on 304 stainless steel using non-destructive laser ultrasound technique. Surface Coat Technol. 2020;385:125404.
  • [25] Evans AG, Lange FF. Crack propagation and fracture in silicon carbide. J Mater Sci. 1975;10:1659–64.
  • [26] Harmouche MR, Wolfenden A. Modulus measurements in ordered Co–Al, Fe–Al, and Ni–Al Alloys. J Test Eval. 1985;13:424.
  • [27] Hearley JA, Little JA, Sturgeon AJ. the effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coating. Surf Coat Technol. 2000;123:210.
  • [28] Ding Y, Zhang Y, Northwood DO, Alpas AT. PVD NiAl intermetallic coatings: microstructure and mechanical properties. Surf Coat Technol. 1997;94(95):483.
  • [29] Wangyu Hu, Li Meiheng, Fukumoto Masahiro. Preparation and properties of HVOF NiAl nanostructured coatings. Mater Sci Eng A. 2008;478:1–8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-228d9d5a-7a70-4597-bf43-1f17b5f98800
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.