PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of Microalgae by Copper Ion in Impressed Current Anti Fouling System for Biofouling Prevention in Saline Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The biofouling causes corrosion in marine environment, also known as the biological corrosion. The biological corrosion occurs in the metal material on coastal buildings, offshore buildings, port buildings and shipboard. One method to prevent the biological corrosion is ICAF (Impressed Current Anti-Fouling). The study on the microalgae that cause biofouling was conducted in laboratory scale using a simple ICAF system. The variables were the operating time of the simple ICAF system, the strength of the electric current and the species of microalgae. The determination of cell number of microalgae was conducted using a Neubauer improved Hemocytomete method, while determination of the concentration of Cu ion was conducted using Atomic Absorption Spectrophotometry (AAS). The aim of the research was to determine of microalgae, Isochrysis galbana and Botryococcus sp, population reduction using ICAF system. On the basis of the results, the highest population reduction occurred in Isochrysis galbana and Botryococcus sp reaching 77.5% and 50%, respectively. The highest concentration of Cu that was produced during the operation of the simple ICAF system reached 4.08 ± mg/L. In conclusion, ion Cu that was produced during the operation of the simple ICAF system can reduce the cell number of Isochrysis galbana and Botryococcus sp.
Rocznik
Strony
80--87
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Department of Ocean Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Environmental and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
autor
  • Department of Ocean Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
Bibliografia
  • 1. Allal, A. A., Mansouri, K., Youssfi, M., and Qbadou, M. 2017. Toward a reliable sea water central cooling system for a safe operation of autonomous ship. Conference: International Conference on Recent Innovations in Engineering and Technology (ICRIET) at Berlin, Germany.
  • 2. Cao, S., Wang, J., Chen, H., and Chen, D. 2011. Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin, 56, 598–612. doi: 10.1007/s11434–010–4158–4
  • 3. Azam, F., and Malfatti, F. 2007. Microbial structuring of marine ecosystems. Nature Review Microbiology, 5, 782–791. doi: 10.1038/nrmicro1747
  • 4. Cooksey, K. E., and Wigglesworth-Cooksey, B. 1995. Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquatic Microbiology and Ecology, 09, 87–96. doi: 10.3354/ame009087
  • 5. Pratikno, P., and Titah, H.S. 2016. Microbial Influenced Corrosion on Aluminium by Pseudomonas fluorescens in different saline water. International Journal of ChemTech Research, 9(12): 600–609.
  • 6. Botsford, J.L. 1998. A simple assay for toxic chemical using a bacterial indicator. World J. Microbiolal Biotechnology, 14: 369–376.
  • 7. Pratikno, P., Titah, H.S., and Handayanu. 2019a. Reduction of Vibrio Alginolyticus Population in System Impressed Current Anti Fouling (ICAF) For Biofouling Prevention. International Journal of Civil Engineering and Technology, 10(1): 1507–1514
  • 8. Pratikno, P., and Titah, H.S. 2017. Bio-corrosion on Aluminium 6063 by Escherichia coli in Marine Environment. IPTEK, The Journal for Technology and Science, 28(2): 55–58.
  • 9. Pratikno, P., Titah, H.S., and Handayanu. 2019b. Impressed Current Anti Fouling (ICAF) to Reduce Population of Chlorella Vulgaris Cause Bio Corrosion on AH36 Steel in Marine Environment. International Conference on Energy, Environment, Epidemiology and Information System (ICENIS), E3S Web of Conferences 125 DOI: https://doi.org/10.1051/e3sconf/201912506001
  • 10. Anonymous. 2016. Training Manual on Live Feed for Marine Finfish and Shellfish Culture. Visakhapatnam Regional Centre Icar-Central Marine Fisheries Research Institute Ocean View Layout, Pandurangapuram Visakhapatnam – 530003.
  • 11. Dongdong, L., Miao, D., Jianxin, Y., and Qiang, L. 2018. Performance of Marine Bioactivities of NAcyloxyethyl-1,2-Benzisothiazol-3(2H)-one Antifouling Paint. IOP Conference Series: Materials Science and Engineering 382.
  • 12. Metzger, P., Largeau, C. 2005. Botryococcus braunii : sumber yang kaya akan hidrokarbon dan lipid eter terkait”.Mikrobiologi Terapan dan Bioteknologi. 66 (25): 486–96. doi : 10.1007/s00253–004–1779-z
  • 13. Wolf, Fred, R., Nonomura, Arthur M, Bassham, James, A. 1985. Pertumbuhan dan Produksi Hidrokarbon bercabang dalam Strain Botryococcus braunii (Chlorophyta). Jurnal Phycology. 21 (3): 388. doi : 10.1111/j.0022–3646.1985.00388.x
  • 14. Zhang, X., Gao, P., Hollimon, V., Brodus, D., Johnson, A., and Hu, H. 2018. Surface thiolation of silicon for antifouling application. Chemistry Central Journal 12:10 https://doi.org/10.1186/s13065–018–0385–6
  • 15. Perez. S. 2006. Cell counts using Improved Neubauer haemocytometer.
  • 16. Alkhamis, Y., and Qin, J.G. 2013. Cultivation of Isochrysis galbana in Phototrophic, Heterotrophic, and Mixotrophic Conditions. Hindawi Publishing Corporation BioMed Research International 1–9. http://dx.doi.org/10.1155/2013/983465
  • 17. Kaplan, D., Cohen, Z., and Abeliovich A. 1986. Optimal growth conditions for Isochrysis galbana. Biomass, 9(1), 37–48.
  • 18. Liang, I, and S.D. Utting. 1980. The influence of salinity on the production of two comercially importanta unicellular marine algae. Aquaculture, 21: 79–86.
  • 19. Fabregas, J., Herrero, C., Abalde, J., and Cabezas, B. 1984. Growth of marine microlagae Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture, 42: 2017–2015.
  • 20. Raso, S., van Genugten, B., Vermuë, M., and Wijffels, R. H. 2012. Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. J Appl Phycol, 24:863–871
  • 21. Grima, E. M, Srinchez Pez, J. A., Garcia Siinchez, J. L., Garcia Camachoa F., and Lpez Alonso, D. 1992. EPA from Isochrysis galbana. Growth Conditions and Productivity. Process Biochemistry, 27: 299–305.
  • 22. Foulkes, E.C. 2008. Transport of Toxic Heavy Metals Across Cell Membranes. Proceedings of the Society for Experimental Biology and Medicine, 223(3). 234–240.
  • 23. Liu, G., Chai, X., Shao, Y., Hu, L., Xie, Q., and Wu, Q. 2011. Toxicity of copper, lead, and cadmium on the motility of two marine microalgae Isochrysis galbana and Tetraselmis chui. Journal of Environmental Sciences, 23(2): 330–335.
  • 24. Miazek, K., Iwanek, W., Remacle, C., Richel, A., and Goffin, D. 2015. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review. Int. J. Mol. Sci. 16, 23929–23969; doi:10.3390/ijms161023929
  • 25. Gani, P., Sunar, N.M., Matias-Peralta, H., Mohamed, R.M.S.N., Latiff, A.A., and Parjo, U. K. 2017. Extraction of hydrocarbons from freshwater green microalgae (Botryococcus sp.) biomass after phycoremediation of domestic wastewater, International Journal of Phytoremediation, 19:7, 679–685, DOI: 10.1080/15226514.2017.1284743
  • 26. Lupi, F.M., H.M.L. Fernandes, I. SaCorreia, and J.M. Novais. 1991. Temperature profiles of cellular growth and exopolysaccharide synthesis by Botryococcus braunii Kütz. UC 58. J. Appl. Phycol. 3, 35–42.
  • 27. Lee, C-H. , Chae, H-S. , Lee, S-H., and Kim H.S. 2015. Growth characteristics and lipid content of three Korean isolates of Botryococcus braunii (Trebouxiophyceae). Journal of Ecol. Environ. 38(1): 67–74.
  • 28. Dayananda, C., Sarada, R., Kumar, V., and Ravishankar, G.A. 2017. Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electronic Journal of Biotechnology. 10(1): 78–91.
  • 29. Juneja, A., Ceballos, R. M., and Murthy, G.S. 2013. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies 6, 4607–4638. doi:10.3390/en6094607
  • 30. Rai, L., and Mallick, N. 1993. Heavy metal toxicity to algae under synthetic microcosm. Ecotoxicology. 2, 231–242.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2287954c-cd63-47b1-8c1a-2ac22b95033f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.