PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorpcja 4-chlorofenolu z roztworów wodnych na mieszanych adsorbentach: węgiel aktywny - nanorurki węglowe

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Adsorption of 4-chlorophenol from aqueous solutions on mixed adsorbents: activated carbon and carbon nanotubes
Języki publikacji
PL
Abstrakty
PL
Celem pracy było zbadanie kinetyki adsorpcji oraz adsorpcji równowagowej 4-chlorofenolu (4-CP) z wody na węglu aktywnym (AC) i nanorurkach węglowych (CNT) oraz na ich mieszaninach o różnym składzie (25/75, 50/50 i 75/25% mas.). Kinetyka adsorpcji przebiegała zgodnie z modelem pseudo 2. rzędu, równowaga adsorpcyjna ustalała się po około 30 minutach w przypadku nanorurek i po około 4 godzinach w przypadku węgla aktywnego. Szybkość adsorpcji 4-CP zwiększała się wraz ze wzrostem ilości nanorurek w mieszaninie adsorbentu, wartość k2 wzrastała z 0,030 g/mmol·min dla AC do 0,709 g/mmol·min dla CNT. Adsorpcja w warunkach równowagowych została opisana za pomocą równań Freundlicha i Langmuira - adsorpcja 4-CP z wody zachodziła zgodnie z modelem Langmuira. Wzrost udziału węgla aktywnego w mieszaninie adsorbentu zwiększał jej zdolność do usuwania 4-CP z roztworu. Wartość maksymalnej pojemności adsorpcyjnej qm wzrosła z 0,296 mmol/g dla CNT do 2,037 mmol/g dla AC.
EN
The adsorption process by solid adsorbents is one of the most efficient methods for the removal of organic pollutants from water. Adsorption is attractive for its relative flexibility and simplicity of design, ease of operation and regeneration as well as no or low generation of toxic substances. Among all the applied adsorbents, the activated carbons are the most widely used adsorbents due to their excellent adsorption abilities for organic compounds. The high adsorption capacities of the activated carbons are usually related to their high surface area and pore volume. Recently carbon nanotubes are also used as adsorbents, mainly due to their high rate of adsorption of organic pollutants. The aim of this study was to investigate the adsorption of 4-chlorophenol (4-CP) from aqueous solutions on mixed adsorbents: activated carbon (AC) and carbon nanotubes (CNT). Such a mixed adsorbent combines the advantages of both activated carbon (high adsorption capacity) as well as carbon nanotubes (excellent kinetic properties). Various adsorbents compositions were tested: 0/100, 25/75, 50/50, 75/25 and 100/0 wt.% of activated carbon/carbon nanotubes. The results showed that the adsorption equilibriums were achieved after 30 min for the carbon nanotubes and after about 4 hours for the activated carbon. For the description of the experimental data, the equations of the pseudo-first and pseudo-second order were considered. The correlation coefficients for the pseudo-first order kinetic model were relatively low, whereas the pseudosecond order model gives an excellent fitting with the high R2 values (> 0.99). This indicates that the adsorption system belongs to the second-order kinetic model. The adsorption rate of 4-CP increased with the increase in the amount of carbon nanotubes in the adsorbent mixture from 0.030 g/mmol·min for pure activated carbon to 0.709 g/mmol·min for CNT. In order to investigate the mechanism of the adsorption, the intraparticle diffusion model (Weber-Morris model) was also used. The results showed that the intraparticle diffusion was not the only rate-controlling step. Moreover, the Weber-Morris plots (qt vs. T1/2) were not linear over the whole time range, suggesting that more than one process affected the adsorption. The adsorption was also analyzed as a function of the solution concentration at the equilibrium. Adsorption isotherms of 4-CP were analyzed using the Freundlich and Langmuir models. The R2 values show that the equilibrium data were better represented by the Langmuir isotherm compared to the Freundlich equation. The increase in the amount of activated carbon in the adsorbent mixture resulted in an increase in the adsorption capacity of the adsorbent from 0.296 mmol/g for CNT to 2.037 mmol/g for AC.
Rocznik
Strony
373--383
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Wojskowa Akademia Techniczna, Instytut Chemii, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
  • Wojskowa Akademia Techniczna, Instytut Chemii, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
autor
  • Politechnika Łódzka, Katedra Termodynamiki Procesowej. ul. Wólczańska 213, 90-924 Łódź
Bibliografia
  • [1] Bansal R.C., Goyal M., Adsorpcja na węglu aktywnym, Wydawnictwo Naukowo-Techniczne, Warszawa 2009.
  • [2] Moreno-Castilla C., Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon 2004, 42, 83-94.
  • [3] Michałowicz J., The occurrence of chlorophenols, chlorocatechols and chlorinated methoxyphenols in drinking water of the largest cities in Poland, Polish Journal of Environmental Studies 2005, 14, 327-333.
  • [4] Jung M.W., Ahn K.H., Lee Y., Kim K.P., Rhee J.S., Park J.T., Paeng K.J., Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC), Microchemical Journal 2001, 70, 123-131.
  • [5] Koumanova B., Peeva-Antova P., Yaneva Z., Adsorption of 4-chlorophenol from aqueous solutions on activated carbon - kinetic study, Journal of the University of Chemical Technology and Metallurgy 2005, 40(3), 213-218.
  • [6] Hamdaoui O., Naffrechoux E., Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, Journal of Hazardous Materials 2007, 147, 381-394.
  • [7] Hameed B.H., Chin L.H., Rengaraj S., Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination 2008, 225, 185-198.
  • [8] Tseng R.L., Wu K.T., Wu F.C., Juang R.S., Kinetics studies on the adsorption of phenol, 4-chlorophenol, and 2,4-dichlorophenol from water using activated carbons, Journal of Environmental Management 2010, 91, 2208-2214.
  • [9] Lorenc-Grabowska E., Gryglewicz G., Machnikowski J., p-chlorophenol adsorption on activated carbons with basic surface properties, Applied Surface Science 2010, 256, 4480-4487.
  • [10] Świątkowski A., Kuśmierek K., Porównanie węgla aktywnego i nanorurek węglowych jako adsorbentów do usuwania 2,4-dichlorofenolu z wody, Inżynieria i Ochrona Środowiska 2013, 16(3), 293-301.
  • [11] Kuśmierek K., Sankowska M., Świątkowski A., Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon, Desalination and Water Treatment 2014, 52, 178-183.
  • [12] Strachowski P., Bystrzejewski M., Comparative studies of sorption of phenolic compounds onto carbon-encapsulated iron nanoparticles, carbon nanotubes and activated carbon, Colloids and Surfaces A 2015 467, 113-123.
  • [13] Kuśmierek K., Sankowska M., Skrzypczyńska K., Świątkowski A., The adsorptive properties of powdered carbon materials with a strongly differentiated porosity and their applications in electroanalysis and SPME-GC, Journal of Colloid and Interface Science 2015, 446, 91-97.
  • [14] Kuśmierek K., Świątkowski A., Influence of pH on adsorption kinetic of monochlorophenols from aqueous solutions on granular activated carbon, Ecological Chemistry and Engineering S 2015, 22(1), 95-105.
  • [15] Kuśmierek K., Świątkowski A., The influence of an electrolyte on the adsorption of 4-chlorophenol onto activated carbon and multi-walled carbon nanotubes, Desalination and Water Treatment 2015, 56, 11, 2807-2816.
  • [16] Kuśmierek K., Świątkowski A., The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon, Reaction Kinetics, Mechanisms and Catalysis 2015, 116, 261-271.
  • [17] Liu Q.S., Zheng T., Wang P., Jiang J.P., Li N., Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chemical Engineering Journal 2010, 157, 348-356.
  • [18] Abdel Salam M., Mokhtar M., Basahel S.N., Al-Thabaiti S.A., Obaid A.Y., Removal of chlorophenol from aqueous solutions by multi-walled carbon nanotubes: Kinetic and thermodynamic studies, Journal of Alloys and Compounds 2010, 500, 87-92.
  • [19] Toth V.A., Torocsik A., Tombacz E., Laszlo K., Competitive adsorption of phenol and 3-chlorophenol on purified MWCNTs, Journal of Colloid and Interface Science 2012, 387, 244-249.
  • [20] Kuśmierek K., Sankowska M., Świątkowski A., Adsorpcja dichlorofenoli z roztworów wodnych na wielościennych nanorurkach węglowych, Przemysł Chemiczny 2013, 92(7), 1257-1260.
  • [21] Kragulj M., Tričković J., Kukovecz A., Jović B., Molnar J., Rončević S., Kónya Z., Dalmacija B., Adsorption of chlorinated phenols on multiwalled carbon nanotubes, RSC Advances 2015, 5, 24920-24929.
  • [22] Chwiałkowski W., Zastosowanie mieszaniny węgli aktywnych o różnym charakterze powierzchni do oczyszczania oleju posmażalniczego, Inżynieria i Ochrona Środowiska 2013, 16(3), 361-371.
  • [23] Lagergren S., Theorie der sogenannten Adsorption geloester Stoffe, Vetenskapsakad Handlung 1898, 24, 1-39.
  • [24] Ho Y.S., McKay G., Pseudo-second-order model for sorption processes, Process Biochemistry 1999, 34, 451-465.
  • [25] Weber J.W., Morris J., Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division 1963, 18, 31-42.
  • [26] Freundlich H.M.F., Über die Adsorption in Lösungen, Zeitschrift für Physikalische Chemie 1906, 57, 385-470.
  • [27] Langmuir I., The constitution and fundamental properties of solids and liquids, Journal of the American Chemical Society 1916, 38, 2221-2295.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22849148-9f94-4b05-989a-dbb2a224bdf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.