PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of seismic quiescences before 1991 Uttarkashi (MW 6.8) and 1999 Chamoli MW (6.6) earthquakes and its implications for stress change sensor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The statistically point process model known as epidemic-type aftershock sequence (ETAS) model is employed for systematically investigating the seismic quiescence or seismic anomalies around the focal regions of large/strong earthquakes for NW Himalaya. For this propose, the model predicted the expected occurrence rates of earthquakes by estimating the model parameters from the earthquake occurrences times using maximum likelihood method, has been used. Then the exhibited relative quiescence due to decreasing occurrence rates from the modeled ones can be identified by inspecting the abnormally downward deviated plot from the extended cumulative curve of the Residual Point Process (RPP) events. Examination of such RPP events in the whole time interval exhibits significant 1.5 years and 2.0 years of relative seismic quiescence before the strong 1991 Uttarkashi (MW 6.8) and 1999 Chamoli (MW 6.6) earthquakes, respectively. Considering the optimally oriented planes of Uttarkashi earthquake, the Coulomb stress changes (ΔCFS) have been investigated to check the rate of seismicity around the focal region of Chamoli earthquake. It has been found that ΔCFS of Uttarkashi earthquake exhibits stress shadow in or near the source zone of Chamoli earthquake and eventually decreases seismicity rates due to seismic quiescence in the source zone. On the other hand, the detected quiescence and activation relative to the predicted seismicity rate are consistent with the obtained Coulomb stress to depict the associated anomalies being sensitive enough to detect a slight stress change in the study region. Henceforth, the increased or decreased seismic activity due to seismic activation or quiescence is found to be consistent with the patterns of the Coulomb’s stress changes calculated on the ruptured fault planes of Uttarkashi earthquake. Hence, this ETAS model based on statistical technique can thus be incorporated with other sensitive geophysical instruments for identifying seismically quiet period not only in the seismic gaps, but also in its neighborhoods along the Himalayan range for mitigating seismic hazards due to impending great earthquakes.
Czasopismo
Rocznik
Strony
509--523
Opis fizyczny
Bibliogr. 86 poz.
Twórcy
  • National Center for Seismology, Ministry of Earth Sciences, New Delhi, India
  • National Center for Seismology, Ministry of Earth Sciences, New Delhi, India
Bibliografia
  • 1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
  • 2. Bansal AR, Ogata Y (2013) A non-stationary epidemic type aftershock sequence model for seismicity prior to the December 26, 2004 M 9.1 Sumatra-Andaman Islands mega-earthquake. J Geophys Res Solid Earth 118:616–629. https://doi.org/10.1002/jgrb.50068
  • 3. Bansal AR, Dimri VP, Babu KK (2013) Epidemic type aftershock sequence (ETAS) modeling of northeastern Himalayan seismicity. J Seismol 17:255–264. https://doi.org/10.1007/s10950-012-9314-7
  • 4. Bollinger L, Avouac JP, Cattin R, Pandey MR (2004) Stress buildup in the Himalaya. J Geophys Res 109:B11405. https://doi.org/10.1029/2003JB002911
  • 5. Bormann P, Khalturin VI (1975) Relations between different kinds of magnitude determinations and their regional variations. Proceedings of the XIVth General Assembly of the European Seismological Commission, Trieste, 16–22 September 1974, ed. National komitee fur Geod¨asie und Geophysik AdK of the GDR, Berlin, 27–35
  • 6. Bormann P, Wylegalla K (1975) Investigation of the correlation relationships between various kinds of magnitude determination at station Moxa depending on the type of instrument and on the source area (in German). Public Inst Geophys Polish Acad Sci 93:160–175
  • 7. Bormann P, Liu R, Ren X, Gutdeutsch R, Kaiser D, Castellaro S (2007) Chinese national network magnitudes, their relation to NEIC magnitudes, and recommendations for new IASPEI magnitude standards. Bull Seismol Soc Am 97:114–127
  • 8. Castellaro S, Bormann P (2007) Performance of different regression procedures on the magnitude conversion problem. Bull Seismol Soc Am 97:1167–1175
  • 9. Castellaro S, Mulargia F, Kagan YY (2006) Regression problems for magnitude. Geophys J Int 165:913–930
  • 10. Chingtham P, Chopra S, Baskoutas I, Bansal BK (2014) An assessment of seismicity parameters in northwest Himalaya and adjoining regions. Nat Hazards 71:1599–1616
  • 11. Chingtham P, Yadav RBS, Chopra S, Yadav AK, Gupta AK, Roy PNS (2015) Time-dependent seismicity analysis in the Northwest Himalaya and its adjoining regions. Nat Hazards 80:1783–1800
  • 12. Chingtham P, Sharma B, Chopra S, Roy PNS (2016) Statistical analysis of aftershock sequences related with two major Nepal earthquakes: April 25, 2015, MW 7.8 and May 12, 2015, MW 7.2. Ann Geophys 59:S0540-S616
  • 13. Chingtham P, Prajapati SK, Gahalaut VK, Chopra S, Roy PNS (2017) Forecasting seismicity rate in the north-west Himalaya using rate and state dependent friction law. Geomat Nat Haz Risk 8(2):1643–1661
  • 14. Chingtham P, Tiwari A, Yadav AK (2019) Forecasting seismic activity rates in northwest Himalaya through multivariate autoregressive forecast of seismicity algorithm. Acta Geophys. https://doi.org/10.1007/s11600-019-00267-5
  • 15. Cotton F, Campillo M, Deschamps A, Rastogi BK (1996) Rupture history and seismotectonics of the 1991 Uttarkashi, Himalaya earthquake. Tectonophysics 258(1):35–51
  • 16. Das R, Wason HR, Sharma ML (2012) Magnitude conversion to unified moment magnitude using orthogonal regression relation. J Earth Sci 50:44–51
  • 17. Dieterich J (1994) A constitutive law for the rate of earthquake production and its application to earthquake clustering. J Geophys Res 99:2601–2618
  • 18. Fletcher R, Powell MJD (1963) A rapidly convergent method for minimization. Comp J 6:163–168
  • 19. GSI (1992) Macroseismic investigation of Uttarkashi earthquake of 20th Oct., 1991. Uttarkashi Earthq Geol Surv India Spec Publ 30:1–188
  • 20. Habermann RE, Wyss M (1984) Background seismicity rates and precursory quiescence: Imperial Valley, California. Bull Seismol Soc Am 74:1743–1756
  • 21. IMD (1992) Instrumental record of Uttarkashi earthquake of October 20, 1991. Uttarkashi Earthq Geol Surv India Spec Publ 30:189–202
  • 22. Inouye W (1965) On the seismicity in the epicentral region and its neighborhood before the Niigata (in Japanese). Q J Seismol 29:139–144
  • 23. Jain SK, Singh RP, Gupta VK, Nagar A (1992) Garhwal Earthquake of Oct. 20, 1991. EERI special earthquake report, EERI newsletter 26(2)
  • 24. Jain SK, Murty CVR, Arlekar JN, Rajendran CP, Rajendran K, Sinha R (1999) Chamoli (Himalaya, India) Earthquake of 29 March 1999. EERI special earthquake report, EERI newsletter 33(7)
  • 25. Kanamori H (1981) The nature of seismicity patterns before large earthquakes. In: Simpso DW, Richards PG (eds) Earthquake prediction: an international review, Maurice Ewing ser, vol 4. American Geophysical Union, Washington, pp 1–19
  • 26. Kayal JR, Ram S, Singh OP, Chakraborty PK, Karunakar G (2003) Aftershocks of the March 1999 Chamoli earthquake and seismotectonic structure of the Garhwal Himalaya. Bull Seismol Soc Am 93(1):109–117
  • 27. Kelleher J, Savino J (1975) Distribution of seismicity before large strike slip and thrust-type earthquakes. J Geophys Res 80:260–271
  • 28. Khattri KN, Zeng Y, Anderson JG, Brune J (1994) Inversion of strong motion waveforms for source slip function of 1991 Uttarkashi earthquake, Himalaya. J Himal Geol 5:163–191
  • 29. King GCP, Stein R, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953
  • 30. Kisslinger C (1988) An experiment in earthquake prediction and the 7th May 1986 Andreanof Islands earthquake. Bull Seismol Soc Am 78:218–229
  • 31. Kumar D, Sarkar I, Sriram V, Khattri KN (2005) Estimation of the source parameters of the Himalaya earthquake of October 19, 1991, average effective shear wave attenuation parameter and local site effects from accelerograms. Tectonophysics 407(1):1–24
  • 32. Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res Solid Earth 111:B03304. https://doi.org/10.1029/2004JB003309
  • 33. Lombardi AM, Marzocchi W (2010) The double branching model (DBM) applied to long-term forecasting Italian seismicity (Ml=5.0) in CSEP experiment. Ann Geophys 53(3):155–164
  • 34. Lomnitz C (1982) What is a gap? Bull Seismol Soc Am 72:1411–1413
  • 35. Lomnitz C, Nava FA (1983) The predictive value of seismic gaps. Bull Seismol Soc Am 73:1815–1824
  • 36. Ma KF, Chan CH, Stein RS (2005) Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw=7.6 Chi-Chi, Taiwan, earthquake. J Geophys Res. https://doi.org/10.1029/2004JB003389
  • 37. Marzocchi W, Lombardi AM (2009) Real-time forecasting following a damaging earthquake. Geophys Res Lett 36:L21302. https://doi.org/10.1029/2009GL040233
  • 38. Matsu’ura RS (1986) Precursory quiescence and recovery of aftershock activities before some large aftershocks. Bull Earthq Res Inst Univ Tokyo 61:1–65
  • 39. Mogi K (1969) Some feature of recent seismic activity in and near Japan (2), activity before and after great earthquakes. Bull Earthq Res Inst Univ Tokyo 47:395–417
  • 40. Mogi K (1987) Recent seismic activity in the Tokai (Japan) region. Tectonophysics 1(38):255–268
  • 41. Nostro C, Cocco M, Belardinelli ME (1997) Static stress changes in extensional regimes: an application to southern Apennines (Italy). Bull Seismol Soc Am 87:234–248
  • 42. Nostro C, Chiaraluce L, Cocco M, Baumont D, Scotti O (2005) Coulomb stress changes caused by repeated normal faulting earthquakes during the 1997 Umbria-Marche (central Italy) seismic sequence. J Geophys Res 110:B05S20. https://doi.org/10.1029/2004JB003386
  • 43. Ogata Y (1981) On Lewis’ simulation method for point processes. IEEE Trans Inform Theory 30:23–31
  • 44. Ogata Y (1983a) Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. J Phys Earth 31:115–124
  • 45. Ogata Y (1983b) Likelihood analysis of point processes and its application to seismological data. Bull Int Statist Inst 50:943–961
  • 46. Ogata Y (1985) Statistical models for earthquake occurrences and residual analysis for point processes. Res Memo (Technical report) 288, Inst Statist Math, Tokyo
  • 47. Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27
  • 48. Ogata Y (1992) Detection of precursory relative quiescence before great earthquakes through a statistical model. J Geophys Res 97:19,845-19,871
  • 49. Ogata Y (1998) Space–time point-process models for earthquake occurrences. Ann Inst Stat Math 50:379–402
  • 50. Ogata Y (1999) Seismicity analyses through point-process modelling: a review. In: Wyss M, Shimazaki K, Ito A (eds) Seismicity patterns, their statistical significance and physical meaning. Birkhäuser Basel, Basel, pp 471–507
  • 51. Ogata Y (2005a) Detection of anomalous seismicity as a stress change sensor. J Geophys Res 110:B05S06. https://doi.org/10.1029/2004JB003245
  • 52. Ogata Y (2005b) Synchronous seismicity changes in and around the northern Japan preceding the 2003 Tokachi-oki earthquake of M8.0. J Geophys Res 110:08305. https://doi.org/10.1029/2004JB003323
  • 53. Ogata Y, Katsura K (1986) Point process model with linearly parameterized intensity for the application to earthquake data. J Appl Probab 23A:291–310
  • 54. Ogata Y, Shimazaki K (1984) Transition from aftershock to normal activity: the 1965 Rat Islands earthquake aftershock sequence. Bull Seismol Soc Am 74:1757–1765
  • 55. Ogata Y, Akaike H, Katsura K (1982) The application of linear intensity models to the investigation of causal relation between a point process and another stochastic process. Ann Inst Statist Math 34:373–387
  • 56. Ohnaka M (1985) A sequence of seismic activity in the Kanto area precursory to the 1923 Kanto earthquake. Pure Appl Geophys 122:848–862
  • 57. Ohtake M, Matumoto T, Latham GV (1977) Seismicity gap near Oaxaca, southern Mexico as a probable precursor to a large earthquake. Pure Appl Geophys 115:375–385
  • 58. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040
  • 59. Omi T, Ogata Y, Hirata Y, Aihara K (2014) Estimating the ETAS model from an early aftershock sequence. Geophys Res Lett 41:850–857. https://doi.org/10.1002/2013GL058958
  • 60. Omori F (1894) On the aftershocks of earthquakes. J Coll Sci Imp Univ Tokyo 7:111–200
  • 61. Parsons T (2002) Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone. J Geophys Res 107:2199. https://doi.org/10.1029/2001JB000646
  • 62. Rajendran K, Rajendran CP, Jain SK, Murthy CVR, Arlekar JN (2000) The Chamoli Earthquake, Garhwal Himalaya: field observations and implications for seismic Hazard. Curr Sci 78(1):45–51
  • 63. Rajendran K, Parameswaran RM, Rajendran CP (2018) Revisiting the 1991 Uttarkashi and the 1999 Chamoli, India, earthquakes: implications of rupture mechanisms in the central Himalaya. J Asian Earth Sci 162:107–120
  • 64. Reasenberg PA, Simpson RW (1992) Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science 255:1687–1690
  • 65. Rikitake T (1979) Classification of earthquake precursors. Tectonophysics 54:293–309
  • 66. Ristau J (2009) Comparison of magnitude estimates for New Zealand earthquakes: moment magnitude, local magnitude, and teleseismic body-wave magnitude. Bull Seism Soc Am 99:1841–1852
  • 67. Satyabala SP, Bilham R (2006) Surface deformation and subsurface slip of the 28 March 1999 Mw = 6.4 west Himalayan Chamoli earthquake from InSAR analysis. Geophys Res Lett 33:L23305. https://doi.org/10.1029/2006GL027422
  • 68. Sharma ML (2003) Seismic hazard in the Northern India region. Seismol Res Lett 74(2):141–147
  • 69. Simpson RW (ed) (1994) The Loma Prieta, California, earthquake of October 17, 1989—tectonic processes and models. US Geological Survey Professional Paper 1550-F, p 131
  • 70. Steacy S, Gomberg J, Cocco M (2005) Introduction to special section: stress transfer, earthquake triggering, and time-dependent seismic hazard. J Geophys Res 110(B5):B05S01
  • 71. Stromeyer D, Grunthal G, Wahlstrom R (2004) Chi-square regression for seismic strength parameter relations, and their uncertainties, with applications to an Mw based earthquake catalogue for central, northern and northwestern Europe. J Seismol 8:143–153
  • 72. Thingbaijam KKS, Nath SK, Yadav A, Raj A, Walling MY, Mohanty WK (2008) Recent seismicity in Northeast India and its adjoining region. J Seismol 12:107–123
  • 73. Thingbaijam KKS, Chingtham P, Nath SK (2009) Seismicity in the North-West Frontier province at the Indian-Eurasian plate convergence. Seismol Res Lett 80:599–608
  • 74. Toda S, Enescu B (2011) Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast. Earth Planets Space 63:171–185
  • 75. Toda S, Stein RS (2002) Response of the San Andreas fault to the 1983 Coalinga-Nun˜ez earthquakes: an application of interaction-based probabilities for park field. J Geophys Res 107(B6):2126. https://doi.org/10.1029/2001JB000172
  • 76. Utsu T (1961) A statistical study on the occurrence of aftershocks. Geophys Mag 30:521–605
  • 77. Utsu T (1968) Seismic activity in Hokkaido and its vicinity (in Japanese). Geophys Bull Hokkaido Univ 13:99–103
  • 78. Von Seggern D, Alexander SS, Baag C (1981) Seismicity parameters preceding moderate to large earthquakes. J Geophys Res X6:Y325-9351
  • 79. Wessel P, Smith WH (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Union 79(47):579–579. https://doi.org/10.1029/98EO00426
  • 80. Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seism Soc Am 95(2):684–698
  • 81. Wyss M, Burford RO (1987) A predicted earthquake on the San Andreas fault, California. Nature 329:323–325
  • 82. Xu W, Bürgmann R, Li Z (2016) An improved geodetic source model for the 1999 Mw 6.3 Chamoli earthquake India. Geophys J Int 205(1):236–242
  • 83. Yadav RBS, Bormann P, Rastogi BK, Das MC, Chopra S (2009) A homogeneous and complete earthquake catalog for Northeast India and the adjoining region. Seismol Res Lett 80:609–627
  • 84. Yadav RBS, Bayrak Y, Tripathi JN, Chopra S, Singh AP, Bayrak E (2011) A probabilistic assessment of earthquake hazard parameters in NW Himalaya and the adjoining regions. Pure Appl Geophys. https://doi.org/10.1007/s00024-011-0434-8
  • 85. Zheng B, Hamburger MW, Popandopulo GA (1995) Precursory seismicity changes preceding moderate and large earthquakes in the Garm region. Central Asia Bull Seismol Soc Am 85(2):571–589
  • 86. Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-227d3537-c121-4af7-89bf-c5bcf6abcd93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.