PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exciton states of titanium dioxide nanocrystals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using a variational method within the framework of an effective mass approximation, applying a triangular coordinate system of an electron, a hole and an exciton moving in a titanium dioxide nanocrystal, an exciton energy spectrum was obtained as a function of a radius of the nanocrystal particle. It was established that the optical absorption of anatase nanocrystal, observed in the experiment, was due to the appearance of an exciton in the nanocrystal. Using a variational calculation of the energy spectrum of the exciton in the nanocrystal, a position of an absorption peak was determined.
Czasopismo
Rocznik
Strony
667--675
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
  • Department of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv 03164, Ukraine
  • Department of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] KARMAKAR S., BISWAS S., KUMBHAKAR P., GANGULY T., Optical properties of TiO2@C nanocomposites: Syntesized by green synthesis technique, Advanced Materials Letters 8(4), 2017: 449-457. https://doi.org/10.5185/amlett.2017.1421
  • [2] SMIRNOVA N.P., PETRIK I.S., VOROBETS V.S., KOLBASOV G.YA., EREMENKO A.M., Sol-gel synthesis, photo- and electrocatalytic properties of mesoporous TiO2 modified with transition metal ions, Nanoscale Research Letters 12(1), 2017: 239. https://doi.org/10.1186/s11671-017-2002-3
  • [3] KHALYAVKA T., BONDARENKO M., SHCHERBAN N., PETRIK I., MELNIK A., Effect of the C and S additives on structural, optical and photocatalytic properties of TiO2, Applied Nanoscience 9(5), 2019: 695-702. https://doi.org/10.1007/s13204-018-0838-1
  • [4] PETRIK I., FROLOVA E., TURCHIN A., SMIRNOVA N., EREMENKO A., Design of titania porous films controlled by precursors’ viscosity for photocatalytic application, Research on Chemical Intermediates 45(8), 2019: 4113-4120. https://doi.org/10.1007/s11164-019-03894-1
  • [5] LINNIK O., POPESCU-PELIN G., STEFAN N., CHORNA N., SMIRNOVA N., MIHAILESCU C., RISTOSCU C., MIHALESCU I., Investigation of nitrogen and iron co-doped TiO2 films synthesized in N2/CH4 via pulsed laser deposition technique, Applied Nanoscience 10, 2020: 2569-2579. https://doi.org/10.1007/s13204-020-01309-x
  • [6] FROLOVA E.K., PETRIK I.S., KOLOMYS O.F., SARBEY O.G., SMIRNOVA N.P., ORANSKA O.I., Paramagnetism and super paramagnetism of nanocrystalline titanium dioxide powders, Journal of Magnetism and Magnetic Materials 529(1), 2021: 167905. https://doi.org/10.1016/j.jmmm.2021.167905
  • [7] SMIRNOVA O., GREBENYUK A., LOBANOV V., A quantum chemical study on the chemical environment of water molecules adsorbed on the anatase surface, Applied Nanoscience 9(5), 2019: 1251-1254. https://doi.org/10.1007/s13204-019-01100-7
  • [8] ELMEHASSEB I., KANDIL S., ELGENDY K., Advanced visible-light applications utilizing modified Zn-doped TiO2 nanoparticles via non-metal in situ dual doping for wastewater detoxification, Optik 213, 2020:164654. https://doi.org/10.1016/j.ijleo.2020.164654
  • [9] MANOJKUMAR P., LOKESHKUMAR E., SAIKIRAN A., GOVARDHANAN B., ASHOK M., RAMESHBABU N., Visible light photocatalytic activity of metal (Mo/V/W) doped porous TiO2 coating fabricated on Cp-Ti by plasma electrolytic oxidation, Journal of Alloys and Compounds 825(6), 2020: 154092. https://doi.org/10.1016/j.jallcom.2020.154092
  • [10] YE J., CHAO C., HONG J., Preparation of a novel nano-TiO2 photocatalytic composite using insoluble wood flour as bio-carrier and dissolved components as accelerant, Journal of Materials Research and Technology 9(5), 2020: 11255-11262. https://doi.org/10.1016/j.jmrt.2020.07.099
  • [11] SERGA V., BURVE R., KRUMINA A., PANKRATOVA V., POPOV A.I., PANKRATOV V., Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method, Journal of Materials Research and Technology 13, 2021: 2350-2360. https://doi.org/10.1016/j.jmrt.2021.06.029
  • [12] KOZLOVSKIY A., ZDOROVETS M., KENZHINA I., BERGUZINOV A., TISHKEVICH D., ZUBAR T., TRUKHANOV A., The study of the applicability of ionizing radiation to increase the photocatalytic activity of TiO2 thin films, Journal of Nanostructure in Chemistry 10, 2020: 331-346. https://doi.org/10.1007/s40097-020-00353-x
  • [13] DOROSHEVA I.B., PETROVA S.A., WEINSTEIN I.A., REMPEL A.A., Synthesis, modification and characterization of titania nanostructures, AIP Conference Proceedings 2466, 2022: 030021. https://doi.org/10.1063/5.0088886
  • [14] TSEBRIIENKO T., POPOV A.I., Effect of poly(titanium oxide) on the viscoelastic and thermophysical properties of interpenetrating polymer networks, Crystals 11(7), 2021: 794. https://doi.org/10.3390/cryst11070794
  • [15] LIN Y.-P., BOCHAROV D., ISAKOVIČA I., PANKRATOV V., POPOV A.A., POPOV A.I., PISKUNOV S., Chlorine adsorption on TiO2(110)/water interface: Nonadiabatic molecular dynamics simulations for photocatalytic water splitting, Electronic Materials 4(1), 2023: 33-48. https://doi.org/10.3390/electronicmat4010004
  • [16] PANKRATOV V., POPOV A.I., SHIRMANE L., KOTLOV A., FELDMANN C., LaPO4:Ce,Tb and YVO4:Eu nanophosphors: Luminescence studies in the vacuum ultraviolet spectral range, Journal of Applied Physics 110(5), 2011: 053522. https://doi.org/10.1063/1.3634112
  • [17] SERGA V., BURVE R., KRUMINA A., ROMANOVA M., KOTOMIN E.A., POPOV A.I., Extraction–pyrolytic method for TiO2 polymorphs production, Crystals 11(4), 2021: 431. https://doi.org/10.3390/cryst11040431
  • [18] SERGA V., BURVE R., MAIOROV M., KRUMINA A., SKAUDZIUS R., ZARKOV A., KAREIVA A., POPOV A.I., Impact of gadolinium on the structure and magnetic properties of nanocrystalline powders of iron oxides produced by the extraction-pyrolytic method, Materials 13(18), 2020: 4147. https://doi.org/10.3390/ma13184147
  • [19] BURVE R., SERGA V., KRUMINA A., POPLAUSKS R., Preparation and characterization of nanocrystalline gadolinium oxide powders and films, Key Engineering Materials 850, 2020: 267–272. https://doi.org/10.4028/www.scientific.net/KEM.850.267
  • [20] ROZMAN N., TOBALDI D.M., CVELBAR U., PULIYALIL H., LABRINCHA J.A., LEGAT A., ŠKAPIN A.S., Hydrothermal synthesis of rare-earth modified titania: Influence on phase composition, optical properties, and photocatalytic activity, Materials 12(5), 2019: 713. https://doi.org/10.3390/ma12050713
  • [21] MUBARAK S., DHAMODHARAN D., DIVAKARAN N., KALE M.B., SENTHIL T., WU, L., WANG J., Enhanced mechanical and thermal properties of stereolithography 3D printed structures by the effects of incorporated controllably annealed anatase TiO2 nanoparticles, Nanomaterials 10(1), 2020: 79. https://doi.org/10.3390/nano10010079
  • [22] MOUSTAFA H., DARWISH D., YOUSSEF A.S., READ S., EL-WAKIL A., High-performance of nanoparticles and their effects on the mechanical,thermal stability and UV-shielding properties of PMMA nanocomposites, Egyptian Journal of Chemistry 61(1), 2018: 23-32. https://doi.org/10.21608/ejchem.2017.1932.1159
  • [23] POKUTNII S.I., Absorption and scattering of light in quasi-zero-dimensional structures: I. Transition dipole moments of the charge carriers, Physics of the Solid State 39(4), 1997: 634-636. https://doi.org/10.1134/1.1129943
  • [24] POKUTNII S.I., Absorption and scattering of light in quasi-zero-dimensional structures: II. Absorption and scattering of light by single-particle local states of the charge carriers, Physics of the Solid State 39(4), 1997: 528-531. https://doi.org/10.1134/1.1129923
  • [25] POKUTNYI S.I., Excitons based on spatially separated electrons and holes in Ge/Si heterostructures with germanium quantum dots, Low Temperature Physics 42(12), 2016: 1151-1154. https://doi.org/10.1063/1.4973506
  • [26] POKUTNYI S.I., KULCHIN Y.N., DZYUBA V.P., AMOSOV A.V., Biexciton in nanoheterostructures of dielectric quantum dots, Journal of Nanophotonics 10(3), 2016: 036008. https://doi.org/10.1117/1.JNP.10.036008
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22774915-4c9c-4781-813d-b7c3e3d2a3f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.