PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Cenozoic tectonic evolution of the main lignite-rich grabens in Poland. Part 1. Tectonic stages

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the Cenozoic tectonic evolution of grabens rich in lignite is important in the context of the accumulation of ~40–650 m of peat, as well as the exploitation of later formed lignite seams with a thickness of ~20–250 m. Six such areas were selected for a detailed palaeotectonic analysis: the Gostyń, Szamotuły, Legnica, Zittau, Lubstów, and Kleszczów grabens. During the analysis, borehole data were used, taking into account the compaction of peat at the transition to lignite, in order to reconstruct the magnitude of the total subsidence. This made it possible to distinguish between regional (covering areas also outside the grabens) and local (occurring only in the grabens) tectonic movements, and among the latter, tectonic and compactional subsidence. The hypothetical palaeosurface of the mires was reconstructed based on the lignite decompaction. As a result, it was possible to determine whether the examined peat/lignite seams underwent post-depositional uplift and/or subsidence. Between one (Gostyń Graben) and four (Zittau Basin and Kleszczów Graben) stages of tectonic subsidence were distinguished in the studied lignite-bearing areas. In the case of the Zittau Basin, as well as the Lubstów and Kleszczów grabens, post-depositional stages of tectonic uplift were also indicated. Like the boundaries of lithostratigraphic units, the successive stages of the Cenozoic tectonic development of the examined grabens are diachronic.
Rocznik
Strony
art. no. e2
Opis fizyczny
Bibliogr. 82 poz., rys.
Twórcy
autor
  • Institute of Geology, Adam Mickiewicz University
Bibliografia
  • 1. Ahlrichs, N., Noack, V., Hübscher, C., Seidel, E., Warwel, A. and Kley, J. 2021. Impact of late Cretaceous inversion and Ceno- zoic extension on salt structure growth in the Baltic sector of the north German Basin. Basin Research, 34, 220–250.
  • 2. Allen, P.A. and Allen, J.R. 1990. Basin Analysis – Principles and Applications, 456 pp. Blackwell Scientific Publications; Oxford.
  • 3. Baldwin, B. and Butler, C.O. 1985. Compaction curves. American Association of Petroleum Geologist Bulletin, 69, 622–626.
  • 4. Bielowicz, B. and Kasiński, J.R. 2014. The possibility of underground gasification of lignite from Polish deposits. International Journal of Coal Geology, 131, 304–318.
  • 5. Brandes, C., Pollok, L., Schmidt, C., Wilde, V. and Winsemann, J. 2012. Basin modelling of a lignite-bearing salt rim syncline: insights into rim syncline evolution and salt diapirism in NW Germany. Basin Research, 24, 1–18.
  • 6. Bridge, J.S. 2003. Rivers and Floodplains: Forms, Processes, and Sedimentary Record, 504 pp. Blackwell Publishing; Malden.
  • 7. Clausen, O.R., Nielsen, S.B., Egholm, D.L. and Gołędowski, B. 2012. Cenozoic structures in the eastern North Sea Basin – a case for salt tectonics. Tectonophysics, 514–517, 156–167.
  • 8. Clausen, O.R. and Pedersen, P. 1999. Late Triassic structural evolution of the southern margin of the Ringkøbing-Fyn high, Denmark. Marine and Petroleum Geology, 16, 653–665.
  • 9. Cohen, K.M., Finney, S.C., Gibbard, P.L. and Fan, J.-X. (2013; updated). The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204.
  • 10. Courel, L. 1987. Stages in the compaction of peat; examples from the Stephanian and Permian of the Massif Central, France. Journal of the Geological Society, London, 144, 489–493.
  • 11. Dadlez, R. and Marek, S. 1998. Major faults, salt-and non-salt anticlines. In: Dadlez, R., Marek S. and Pokorski J. (Eds), Paleogeographic atlas of epicontinental Permian and Mesozoic in Poland (1:2,500,000), 75. Polish Geological Institute; Warsaw.
  • 12. Dadlez, R., Marek, S. and Pokorski, J. (Eds) 2000. Geological map of Poland without Cenozoic deposits at a scale 1:1,000,000. Polish Geological Institute; Warsaw.
  • 13. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T. and Wess, J.D. 1995. Tectonic evolution of Mid-Polish Trough. Modelling implications and significance for central European geology. Tectonophysics, 252, 179–195.
  • 14. Deczkowski, Z. and Gajewska, I. 1980. Mesozoic and Tertiary troughs in the Fore-Sudetic Monocline. Przegląd Geologiczny, 28, 151–156. [In Polish with English summary]
  • 15. Diessel, C., Boyd, R., Wadsworth, J., Leckie, D. and Chalmers, G. 2000. On balanced and unbalanced accommodation/peataccumulations ratios in the Cretaceous coals from Gates Formation, Western Canada, and their sequence-stratigraphic significance. International Journal of Coal Geology, 43,143–186.
  • 16. Gotowała, R. and Hałuszczak, A. 2002. The Late Alpinie structural development of the Kleszczów Graben (Central Poland) as a result of a reactivation of the pre-existing, regional dislocation. European Geoscience Union, Stephan Mueller Special Publication Series, 1, 137–150.
  • 17. Hager, H. 1993. Origin of the Tertiary lignite deposits in the lower Rhine region, Germany. International Journal of Coal Geology, 23, 251–262.
  • 18. Hager, H., Kothen, H. and Spann, R. 1981. Zur Setzung der Rheinischen Braunkohle und ihrer klastischen Begleitschichten. Fortschritte in der Geologie von Rheinland und Westfalen, 29, 319–352. [In German]
  • 19. Harding, R. and Huuse, M. 2015. Salt on the move: Multi stage evolution of salt diapirs in the Netherlands North Sea. Marine and Petroleum Geology, 61, 39–55.
  • 20. Jarosiński, M., Poprawa, P. and Ziegler, P.A. 2009. Cenozoic dynamic evolution of the Polish Platform. Geological Quarterly, 53, 3–26.
  • 21. Karnkowski, P.H. 1980. The paleotectonic of platform cover in the Wielkopolska. Przegląd Geologiczny, 28, 146–151. [In Polish with English summary]
  • 22. Kasiński, J.R. 1984. Synsedimentary tectonics as the factor determining sedimentation of brown coal formation in tectonic depressions in western Poland. Przegląd Geologiczny, 32, 260–268. [In Polish with English summary]
  • 23. Kasiński, J.R. 2000. Geological atlas of the Tertiary lignitebearing association in the Polish part of the Zittau Basin, scale 1:50,000. Polish Geological Institute; Warsaw.
  • 24. Kasiński, J.R., Badura, J., Pańczyk, M., Pécskay, Z., Saternus, A., Słodkowska, B. and Urbański, P. 2015. Paleogene deposits in the Polish part of the Zittau Basin – new light on the age of the tectonic depression. Biuletyn Państwowego Instytutu Geologicznego, 461, 193–250.
  • 25. Kasiński, J.R., Mazurek, S. and Piwocki, M. 2006. Valorization and ranking, list of lignite deposits in Poland. Prace Państwowego Instytutu Geologicznego, 187, 1–79. [In Polish with English summary]
  • 26. Kasiński, J.R., Saternus, A. and Urbański P. 2019. Geological atlas of Polish selected lignite deposits in Poland. Volume 1, 240 pp. Polish Geological Institute; Warsaw. [In Polish]
  • 27. Kędzior, A., Widera, M. and Zieliński, T. 2021. Ancient and modern anastomosing rivers: insights from sedimentological and geomorphological case studies of the Triassic, Neogene and Holocene of Poland. Geological Quarterly, 65, 54.
  • 28. Krzywiec, P. 2012. Mesozoic and Cenozoic evolution of salt structures within the Polish Basin: An overview. In: Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T. and Hodgkinson R. (Eds), Salt tectonics, sediments and prospectivity. Geological Society, London, Special Publications, 363, 381–394.
  • 29. Krzywiec, P., Kiersnowski, H. and Peryt, T. 2019. Fault-controlled Permian sedimentation in the central Polish Basin (Bydgoszcz-Szubin area) – Insights from well and seismic data. Zeitschrift der Deutschen Gesellschaft für Geowissen-schaften, 170, 255–272.
  • 30. Malkovsky, M. 1987. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics, 137, 31–42.
  • 31. Markič, M. and Sachsenhofer, R.F. 1997. Petrographic composition and depositional environments of the Pliocene Velenje lignite seam (Slovenia). International Journal of Coal Geology, 33, 229–254.
  • 32. Michon, L., Van Balen, R.T., Merle, O. and Pagnier, H. 2003. The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics, 367, 101–126.
  • 33. Nadon, G.C. 1998. Magnitude and timing of peat-to-coal compaction. Geology, 26, 727–730.
  • 34. Opluštil, S. 2005. The effect of paleotopography, tectonics and sediment supply on quality of coal seams in continental basins of central and western Bohemia (Westphalian), Czech Republic. International Journal of Coal Geology, 64, 173–203.
  • 35. Pharaoh, T., Dusar, M., Geluk, M., Kockel, F., Krawczyk, C., Krzywiec, P., Scheck-Wenderoth, M., Thybo, H., Vejbæk, O.V. and van Wees, J.-D. 2010. Tectonic evolution. In: Doornenbal, H. and Stevenson, A.G. (Eds), Petroleum geological atlas of the southern Permian Basin area, 25–57. EAGE Publications; Houten.
  • 36. Piwocki, M. and Ziembińska-Tworzydło, M. 1997. Neogene of the Polish Lowlands –lithostratigraphy and pollen-spore zones. Geological Quarterly, 41, 21–40.
  • 37. Rajchl, M., Uličný D., Grygar, R. and Mach, K. 2009. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Research, 21, 269–294.
  • 38. Rajchl, M., Uličný D. and Mach, K. 2008. Interplay between tectonics and compaction in a rift-margin, lacustrine delta system: Miocene of the Eger Graben, Czech Republic. Sedimentology, 55, 1419–1447.
  • 39. Rasmussen, E.S. 2009. Neogene inversion of the central graben and Ringkøbing-Fyn high, Denmark. Tectonophysics, 465, 84–97.
  • 40. Rasmussen, E.S. 2013. Cenozoic structures in the eastern North Sea Basin – A case for salt tectonics: Discussion. Tectonophysics, 601, 226–233.
  • 41. Rowan, M. and Krzywiec, P. 2014. The Szamotuły salt diapir and Mid-Polish Trough: Decoupling during both Triassic– Jurassic rifting and Alpine inversion. Interpretation, 2 (4), SM1–SM18.
  • 42. Ryer, T.A. and Langer, A.W. 1980. Thickness change involved in the peat-to-coal transformation for a bituminous coal of Cretaceous age in central Utah. Journal of Sedimentary Petrology, 50, 987–992.
  • 43. Schäfer, A. and Utescher, T. 2014. Origin, sediment fill, and sequence stratigraphy of the Cenozoic Lower Rhine Basin (Germany) interpreted from well logs. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 287–314.
  • 44. Schäfer, A., Utescher, T., Klett, M. and Valdivia-Manchego, M. 2005. The Cenozoic Lower Rhine Basin – rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences, 94, 621–639.
  • 45. Sclater, J.G. and Christie, P.A.F. 1980. Continental stretching: An explanation of post-mid-Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research, 85, 3711–3939.
  • 46. Sheldon, N.D. and Retallack, G.J. 2001. Equation for compaction of paleosols due to burial. Geology, 29, 247–250.
  • 47. Špičáková, L., Uličný, D. and Koudelková, G. 2000. Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between Late Oligocene and Pliocene: a preliminary note. Studia Geophysica et Geodaetica, 44, 556–580.
  • 48. Tajduś, A., Kaczorowski, J., Kasztelewicz, Z., Czaja, P., Cała, M., Bryja, Z. and Żuk, S. 2014. Brown coal – an offer for Polish power industry – development possibilities for brown coal mining functioning in Poland by the year 2050, 307 pp. Mining Committee of the Polish Academy of Sciences; Kraków. [In Polish]
  • 49. ten Veen, J.H., van Gessel, S.F. and den Dulk, M. 2012. Thin-and thick-skinned salt tectonics in The Netherlands; a quantitative approach. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 91, 447–464.
  • 50. ten Veen, J.H. and Kleinspehn, K.L. 2000. Quantifying the timing and sense of fault dip slip: New application of biostratigraphy and geohistory analysis. Geology, 28, 471–474.
  • 51. Teichmüller, M. 1989. The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology, 12, 1–87.
  • 52. Van Asselen, S. 2011. The contribution of peat compaction to total basin subsidence: implications for the provision of accommodation space in organic-rich deltas. Basin Research, 23, 239–255.
  • 53. Van Balen, R.T., Houtgas, R.F. and Cloetingh, S.A. 2005. Neotectonics of The Netherlands: a review. Quaternary Science Reviews, 24, 439–454.
  • 54. Van Hinte, J.E. 1978. Geohistory analysis – Application of micropaleontology in exploration geology. American Association of Petroleum Geologist Bulletin, 62, 201–222.
  • 55. Vinken, R. (compiler) 1988. The Northwest European Tertiary Basin, Results of the IGCP, Project No 124. Geologisches Jahrbuch, A 100, 508 pp. Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover.
  • 56. Warsitzka, M., Jähne-Klingberg, F., Kley, J. and Kukowski, N. 2019. The timing of salt structure growth in the Southern Permian Basin (Central Europe) and implications for basin dynamics. Basin Research, 31, 337–360.
  • 57. Wentworth, C.K. 1922. A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30, 377–392.
  • 58. Widera, M. 2004. Phases of Paleogene and Neogene tectonic evolution of selected grabens in the Wielkopolska area, central-western Poland. Annales Societatis Geologorum Poloniae, 74, 295–310.
  • 59. Widera, M. 2007. Lithostratigraphy and palaeotectonics of the sub-Pleistocene Cenozoic of Wielkopolska, 224 pp. Adam Mickiewicz University Science Press; Poznań. [In Polish with English summary]
  • 60. Widera, M. 2011. Postsedimentary tectonic uplift in the Lubstów Graben (Central Poland). Przegląd Geologiczny, 59, 681–687. [In Polish with English summary]
  • 61. Widera, M. 2012. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland. Geologos, 18, 1–11.
  • 62. Widera, M. 2013. Changes of the lignite seam architecture – a case study from Polish lignite deposits. International Journal of Coal Geology, 114, 60–73.
  • 63. Widera, M. 2015. Compaction of lignite: a review of methods and results. Acta Geologica Polonica, 65, 367–368.
  • 64. Widera, M. 2016a. Genetic classification of Polish lignite deposits: A review. International Journal of Coal Geology, 158, 107–118.
  • 65. Widera, M. 2016b. Depositional environments of overbank sedimentation in the lignite-bearing Grey Clays Member: New evidence from Middle Miocene deposits of central Poland. Sedimentary Geology, 335, 150–165.
  • 66. Widera, M. 2016c. An overview of lithotype associations forming the exploited lignite seams in Poland. Geologos, 22, 213–225.
  • 67. Widera, M. 2019. What can be learned about the deposition and compaction of peat from the Miocene lignite seam exposed in the Chłapowo Cliff on the Polish coast of the Baltic Sea? Geology, Geophysics and Environment, 45, 111–119.
  • 68. Widera, M. 2021. Geology of Polish lignite deposits, 180 pp. Bogucki Science Press; Poznań. [In Polish]
  • 69. Widera, M., Chomiak, L. and Wachocki, R. 2023. Distinct types of crevasse splays formed in the area of Middle Miocene mires, central Poland: Insights from geological mapping and facies analysis. Sedimentary Geology, 443, 106300.
  • 70. Widera, M., Chomiak, L. and Zieliński, T. 2019a. Sedimentary facies, processes and paleochannel pattern of an anastomosing river system: an example from the Upper Neogene of Central Poland. Journal of Sedimentary Research, 89, 487–507.
  • 71. Widera, M., Ćwikliński, W. and Karman, R. 2008. Cenozoic tectonic evolution of the Poznań-Oleśnica Fault Zone, central-western Poland. Acta Geologica Polonica, 58, 455–471.
  • 72. Widera, M., Glacová, V. and Marschalko, M. 2022. Origin of clastic partings and their impact on ash yield in mined lignite: A case study from Middle Miocene of central Poland. Journal of Cleaner Production, 378, 134401.
  • 73. Widera, M. and Hałuszczak, A. 2011. Stages of the Cenozoic tectonics in central Poland: examples from selected grabens. Zeitschrift der Deutschen Gesellschaft für Geowissen-schaften, 162, 203–215.
  • 74. Widera, M., Jachna-Filipczuk, G., Kozula, R. and Mazurek, S. 2007. From peat bog to lignite seam: a new method to calculate the consolidation coefficient of lignite seams, Wielkopolska region in central Poland. International Journal of Earth Sciences, 96, 947–955.
  • 75. Widera, M., Stawikowski, W. and Uścinowicz, G. 2019b. Paleogene–Neogene tectonic evolution of the lignite-rich Szamotuły Graben. Acta Geologica Polonica, 69, 387–401.
  • 76. Widera, M., Zieliński, T., Chomiak, L., Maciaszek, P., Wachocki, R., Bechtel, A., Słodkowska, B., Worobiec, E. and Worobiec, G. 2021. Tectonic-climatic interactions during changes of depositional environments in the Carpathian foreland: An example from the Neogene of central Poland. Acta Geologica Polonica, 71, 519–542.
  • 77. Ziegler, P.A. 1990. Geological atlas of Western and Central Europe, 2nd edition, 239 pp. Shell Internationale Petroleum Maatschappij B.V. and Geological Society Publishing House; London.
  • 78. Ziegler, P.A., Cloetingh, S.A. and van Wees, J.-D. 1995. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics, 252, 7–59.
  • 79. Ziegler, P.A. and Dèzes, P. 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change, 58, 237–269.
  • 80. Zieliński, T. 2014. Sedimentology. River and lake deposits, 594 pp. Adam Mickiewicz University Science Press; Poznań. [In Polish]
  • 81. Zieliński, T. and Widera, M. 2020. Anastomosing-to-meandering transitional river in sedimentary record: A case study from the Neogene of central Poland. Sedimentary Geology, 404, 105677.
  • 82. Zijerveld, L., Stephenson, R., Cloetingh, S.A., Duin, E. and Van den Berg, M.W. 1992. Subsidence analysis and modelling of the Roer Valley Graben (SE Netherland). Tectonophysics, 208, 159–171.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2276e1f5-3337-478b-9193-775be60b8d54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.