Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article reports sol-gel synthesis of nanosized spinel-type lithium manganese oxide LiMn2O4 (LMO) carried out in the presence of graphene oxide (GO) and its electrochemical lithium insertion ability. The synthesis was performed in an aqueous environment with lithium acetate and manganese acetate used as precursors and citric acid as a chelating agent. The material was characterized by X-ray diffraction, SEM microscopy, Raman spectroscopy and cyclic voltammetry. The calcination step totally eliminated graphene from the final product, nevertheless its presence during the synthesis was found to affect the resulting LiMn2O4 morphology by markedly reducing the size of grains. Moreover, potentials of electrochemical lithium insertion/deinsertion reactions have been shifted, as observed in the cyclic voltammetry measurements. Along with the diminished grain size the voltammetric curves of the graphene oxide-modified material exhibit higher oxidation and lower reduction peak currents. The study demonstrates that GO mediation/assistance during the sol-gel synthesis fosters more nanostructured powder and changes the electrochemical characteristics of the product.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--19
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
- Institute of Non-Ferrous Metals Division in Poznań Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznań, Poland
- Poznań University of Technology, Institute of Physics, Nieszawska 13a, 60-965 Poznań, Poland
autor
- Institute of Electronic Materials Technology, Wolczyńska 133, 01-919 Warsaw, Poland
autor
- Institute of Non-Ferrous Metals Division in Poznań Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznań, Poland
autor
- Institute of Electronic Materials Technology, Wolczyńska 133, 01-919 Warsaw, Poland
autor
- Institute of Electronic Materials Technology, Wolczyńska 133, 01-919 Warsaw, Poland
Bibliografia
- 1. Kang, K. et al. (2006). Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science 311, 977-980. DOI: 10.1126/science.1122152.
- 2. Aricò, A.S. et al. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366-377. DOI: 10.1038/nmat1368.
- 3. Jiang, Ch., Hosono, E. & Zhou, H. (2006). Nanomaterials for lithium ion batteries. Nano Today 1, 28-33. DOI: 10.1016/ S1748-0132(06)70114-1.
- 4. Jiang, Ch. et al. (2007). Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. ElectrochimicaActa 52, 6470-6475. DOI: 10.1016/j.electacta.2007.04.070.
- 5. Tarascon, J.M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367. DOI: 10.1038/35104644.
- 6. Kovacheva, D. et al. (2002). Synthesizing nanocrystalline LiMn2O4 by a combustion route. J. Mater. Chem. 12, 1184-1188. DOI: 10.1039/b107669h.
- 7. Thackeray, M.M. (1997). Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1-71. DOI: 10.1016/ S0079-6786(97)81003-5.
- 8. Liu, W., Kowal, K. & Farrington, G.C. (1998). Mechanism of the Electrochemical Insertion of Lithium into LiMn2O4 Spinels. J. Electrochem. Soc. 145, 459-465. DOI: 10.1149/1.1838285.
- 9. Lee, Y.S. et al. (1998). Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics 109, 285-294. DOI: 10.1016/S0167-2738(98)00085-X.
- 10. Park, H.S. et al. (2001). Relationship between Chemical Bonding Character and Electrochemical Performance in Nickel-Substituted Lithium Manganese Oxides. J. Phys. Chem. B 105, 4860-4866. DOI: 10.1021/jp010079+.
- 11. Michalska, M. et al. (2011). Nanocrystalline lithium-manganese oxide spinels for Li-ion batteries - Sol-gel synthesis and characterization of their structure and selected physical properties. Solid State Ionics 188, 160-164, DOI: 10.1016/j. ssi.2010.12.003.
- 12. Curtis, C.J., Wang, J.X. & Schulz, D.L. (2004). Preparation and Characterization of LiMn2O4 Spinel Nanoparticles as Cathode Materials in Secondary Li Batteries. J. Electrochem. Soc. 151, A590-A598. DOI: 10.1149/1.1648021.
- 13. Cabana, J. et al. (2007). Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. J. Power Sources 166, 492-498. DOI: 10.1016/j. jpowsour.2006.12.107.
- 14. Jiang, C.H. et al. (2007). Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. J. PowerSources 172, 410-415. DOI: 10.1016/j.jpowsour.2007.07.039.
- 15. Bak S.M. et al. (2011). Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem. 21, 17309-17315. DOI: 10.1039/C1JM13741G.
- 16. Wan Ch., Nuli Y., Zhuang J., Jiang Z. (2002). Synthesis of spinel LiMn2O4 using direct solid state reaction. MaterialsLetters 56, 357-363. DOI: 10.1016/S0167-577X(02)00485-8.
- 17. Zhang, X. et al. (2011). Electrochemical performance of spinel LiMn2O4 cathode materials made by flame-assisted spray technology. J. Power Sources 196, 3640-3645. DOI: 10.1016/j. jpowsour.2010.07.008.
- 18. Luo, J. et al. (2007). LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability. Electrochem. Commun. 9, 1404-1409. DOI: 10.1016/j.elecom.2007.01.058.
- 19. Liu, X.M. et al. (2010). Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J. Power Sources 195, 4290-4296. DOI: 10.1016/j.jpowsour.2010.01.068.
- 20. Kim, F. et al. (2010). Self-Propagating Domino-like Reactions in Oxidized Graphite. Adv. Funct. Mater. 20, 2867-2873. DOI: 10.1002/adfm.201000736
- 21. Hummers, W.S. & Offeman, R.E. (1958). Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339. DOI: 10.1021/ja01539a017.
- 22. Julien, C.M., Massot, M. (2003). Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Materials Science and Engineering B 97, 217-230. DOI: 10.1016/S0921-5107(02)00582-2.
- 23. Eda, G. & Chhowalla, M. (2010). Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 22, 2392-2415. DOI: 10.1002/ adma.200903689.
- 24. Kiani, M.A., Mousavi, M.F. & Rahmanifar, M.S. (2011). Synthesis of Nano- and Micro-Particles of LiMn2O4: Electrochemical Investigation and Assessment as a Cathode in Li Battery. Int. J. Electrochem. Sci. 6, 2581-2595.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2271780c-0fc3-4042-8146-2e8c19ff0172