PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lentil Yield Performance and Quality as Affected by Moisture Supply

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents alternatives for the use of additional components of cultivation technology for lentil that are aimed at increasing tolerance to a water deficiency at the early stages of growth and development, namely: (i) soil amendment with moisture-retaining polymers; (ii) seed treatment with a growth regulator contributing to a better formation of the root system; (iii) the use of biological product providing for the formation of the soil mycorrhizal biota; and (iv) foliar application of micro fertilizers. The best in terms of the effect on the growth and development of plants appeared the following treatments: seed treatment with the growth regulator Kelpak SC (3 l/t), soil amendment with moisture-retaining polymers Aquasorb (200 kg/ha) and mycorrhizal bio preparation Mycofriend (1 l/ha), followed by the treatment of plants with micro fertilizer Reakom-SP-Legumes (3 l/ha, BBCH 14) or Quantum-Legumes (1.0 l/ha, BBCH 14). These treatments contributed to an increase in the number of stems of the 2nd and 3rd orders by 1.8 and 2.0, leaves by 8.6 and 8.8, and nods by 15.3 and 16.1, respectively, compared to the control treatment. In addition, a combination of these plant products had a positive impact on the formation of filled beans, and the plants formed 23.5−23.7 filled beans. Also, these treatments provided 1.6−1.8 times increase in the number of seeds per bean compared to the control. Pre-sowing seed treatment with the growth regulator Kelpak SC (3 l/t), application of moisture-retaining polymers Aquasorb (200 kg/ha) and mycorrhizal bio preparation Mycofriend (1 l/ha), followed by foliar application of fertilizers Reakom SC Legumes (3 l/ha, BBCH 14) or Quantum-Legumes (1.0 l/ha, BBCH 14) contributed to the formation of lentil yield of 3.15 and 3.17 t/ha, respectively, over the years of the experiment. The integral action of these plant products contributed to obtaining seeds with a higher content of proteins, fats, and carbohydrates, as well as vitamins, macro and microelements. Moreover, young lentil sprouts can resist adverse environmental factors due to the richer biochemical stocks formed in a seed.
Twórcy
  • Institute of Bioenergy Crops and Sugar Beet NAAS, 25 Klinichna St., Kyiv, 03110, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
autor
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
Bibliografia
  • 1. Biswapati M., Pal S., Mandal L.N. 1998. Effect of molybdenum, phosphorus and lime application to acid soils on dry matter yield and molybdenum nutrition of lentil. Journal of Plant Nutrition, 211, 139–147.
  • 2. Bonfante P., Genre A. 2015. Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’? Trends Plant Sci., 20, 150–154. DOI: 10.1016/j.tplants.2014.12.002
  • 3. Brennan R.F., Bolland M.D.A. 2003. Application of fertilizer manganese doubled yields of lentil grown on alkaline soils. Journal of Plant Nutrition, 26, 1263–1276.
  • 4. Cherenkov A.V., Klysha A.I., Hyrka A.D. 2013. Modern technology of growing lentils. Dnipropetrovsk.
  • 5. Clark M.J., and Zheng Y. 2017. Effect of Topdressed Controlled-release Fertilizer Rates on Nursery Crop Quality and Growth and Growing Substrate Nutrient Status in the Niagara Region, Ontario, Canada. HortScience, 52(1), 167–173. DOI: 10.21273/HORTSCI11309-16
  • 6. Classen A.T., Sundqvist M.K., Henning J.A., Newman G.S., Moore J.A. M., Cregger M.A., et al. 2015. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6, 1–21. DOI: 10.1890/ES15-00217.1
  • 7. Ermantraut E.R., Prysiazhniuk O.I., Shevchenko I.L. 2007. Statistical analysis of agronomic study data in the Statistica 6.0 software suite. Kyiv: PolihrafKonsaltynh.
  • 8. Erskine W., Tufail M., Russell A., Tyagi M.C., Rahman M.M., Saxena M.C. 1994. Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica, 73, 127–135.
  • 9. FAO STAT Crops statistics. 2020. http://www.fao.org/faostat/en/#data/QC
  • 10. Foti C., Kalampokis I.F., Aliferis K.A., Pavli O.I. 2021. Metabolic Responses of Two Contrasting Lentil Genotypes to PEG-Induced Drought Stress. Agronomy, 11, 1190. DOI: 10.3390/agronomy11061190
  • 11. Hajong P., Rahman H.M., Kabir S.M., Paul S. 2020. Production and value chain analysis of lentil in some selected areas of Bangladesh. International Journal of Sustainable Agricultural Research, 7(4), 234–243.
  • 12. Kahraman A., Khan M.K., Pandey A., Dogan E. 2016. Effect of Supplemental Irrigation on Lentil Yield and Growth in Semi-Arid Environment. Not Bot Horti Agrobo, 44(1), 237–244. DOI: 10.15835/nbha44110218
  • 13. Kassab O.M., Abdelraouf R.E., Ibrahim M.M., Abo Ellil A.A., Abdallah E.F. 2014. Response of Certain Varie-ties of Lentil to Deficit Irrigation under Sandy Soils Conditions. Middle East Journal of Agriculture Research, 3(4), 1037–1046.
  • 14. Khurana M.P.S., Bansal R.L., Nayyar V.K. 1998. Influence of zinc application on yield and micronutrient nutrition of lentil grown on Typic Ustochrepts. LENS Newsletter, 25, 38–41.
  • 15. Lal R., Follett F., Stewart B.A., Kimble J.M. 2007. Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci., 172, 943–956.
  • 16. Leng G., Hall J. 2019. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 654, 811–821.
  • 17. Liu K., Blackshaw R.E., Johnson E.N., Hossain Z., Hamel C., St-Arnaud M., Gana Y. 2019. Lentil enhances the productivity and stability of oilseed-cereal cropping systems across different environments. European Journal of Agronomy, 105, 24–31. https://doi.org/10.1016/j.eja.2019.02.005
  • 18. Mahler R.L. 2007. Peas and Lentils. Northern Idaho Fertiliser Guide. Current Information Series No. 448. Available at: www.uidaho.edu/wgfert
  • 19. McKenzie B.A., Hill G.D. 2004. Water use in grain legumes. In: Proceedings of the 5th European Conference on Grain Legumes/2nd International Conference on Legume Genomics and Genetics, AEP – l’Association Européenne de Recherche sur les Protéagineuse, Paris, France, 61–62.
  • 20. Miah M., Rashid A., Harun Md., Rahman M. 2021. Productivity and resource use efficiency in lentil production in selected areas of Bangladesh. Bangladesh Journal of Agricultural Research, 46, 231–243.
  • 21. Pandey P., Irulappan V., Bagavathiannan M.V., Senthil-Kumar M. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 1–15
  • 22. Prysiazhniuk O.I., Klymovych N.M., Polunina O.V., Yevchuk Ya.V., Tretiakova S.O., Kononenko L.M., Voitovska V.I., Mykhailovyn Yu.M. 2021. Methodology and organization of research in agriculture and food technology. K., LLC «Nilan-LTD».
  • 23. Prysiazhniuk O.I., Slobodianiuk S.V., Topchii O.V., Sukhova H.I., Karpuk L.M., Kryvenko А.I., Svystunova I.V., Pavlichenko A.A. 2020. Peculiarities of the lentil productivity formation under the use of nitrogen-fixing and phosphate-mobilizing microorganisms. Bulletin of National Academy of Sciences of the Republic of Kazakhstan, 4(386), 81–89. https://doi.org/10.32014/2020.2518-1467.107
  • 24.Ramegowda V., Senthil-Kumar M. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47–54.
  • 25. Sarker A., Aydin N., Aydogan A., Sabaghpour S.H., Ketata H., Kusmenoglu I., Erskine W. 2002a. Winter lentils promise improved nutrition and income in West Asian Highlands. ICARDA Caravan, 16, 14–16.
  • 26. Sarker A., Neupane R.K., Sakr B., El Ashkar F., Lutfir A., Erskine W. 2002b. More grain from less rain: ICAR-DA’S strategy to improve lentil for resource-poor farmers in dry areas. ICARDA Caravan 17. www.icarda.org/publications/
  • 27. Shrestha R., Siddique K.H.M., Turner N.C., Turner D.W., Berger J.D. 2005. Growth and seed yield of lentil (Lens culinaris Medikus) genotypes of West Asian and South Asian origin and crossbreds between the two under rainfed con-ditions in Nepal. Australian Journal of Agricultural Research, 56, 971–981.
  • 28. Siddique K.H.M., Loss S.P., Pritchard D.L., Regan L., Tennant D., Jettner R.L., Wilkinson D. 1998. Adaptation of len-til (Lens culinaris Medic.) to Mediterranean type environments: effect of time of sowing on growth, yield and water use. Australian Journal of Agricultural Research, 49, 613–626.
  • 29. Sinha S.K. 1977. Food legumes: distribution, adaptability and biology of yield. FAO Plant Production and Protection, 3, 124
  • 30. Srivastava S.P., Bhandari T.M.S., Yadav C.R., Joshi M., Erskine W. 2000. Boron deficiency in lentil: yield loss and geographic distribution in a germplasm collection. Plant and Soil, 219, 147–151.
  • 31. Srivastava S.P., Joshi M., Johansen C., Rego T.J. 1999. Boron deficiency of lentil in Nepal. LENS Newsletter, 26, 22–24.
  • 32. Zhang H., Pala M., Oweis T., Harris H. 2000. Water use and water-use efficiency of chickpea and lentil in a Mediterranean environment. Australian Journal of Agricultural Research, 51, 295–304.
  • 33. Zhang X., Chen N., Sheng H., Ip C., Yang L, Chen Y., et al. 2019. Urban drought challenge to 2030 sustainable development goals. Science of the Total Environment.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-226e1c89-fd4e-493f-93de-9115a4b9d9d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.