PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The separation of carbon dioxide from CO2/N2/O2 mixtures using polyimide and polysulphone membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results are presented concerning the separation of the mixtures of carbon dioxide, nitrogen and oxygen in membrane modules with modified polysulphone or polyimide as active layers. The feed gas was a mixture with composition corresponding to that of a stream leaving stage 1 of a hybrid adsorptivemembrane process for the removal of CO2 from dry flue gas. In gas streams containing 70 vol.% of CO2, O2 content was varied between 0 and 5 vol.%. It is found that the presence of oxygen in the feed gas lowers the purity of the product CO2 in all the modules studied, while the recovery depends on the module. In the PRISM module (Air Products) an increase in O2 feed concentration, for the maximum permeate purity, led to a rise in CO2 recovery, whereas for the UBE modules the recovery did not change.
Rocznik
Strony
449--–456
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
  • Institute of Chemical Engineering, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
  • Institute of Chemical Engineering, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
  • 1. Brinkmann T., Pohlmann J., Bram M., Zhao L., Tota A., Escalona N. J., de Graaff M., Stolten D., 2015. Investigating the influence of the pressure distribution in a membrane module on the cascaded membrane system for post-combustion capture. Int. J. Greenhouse Gas Control, 39, 194–204. DOI: 10.1016/j.ijggc.2015.03.010.
  • 2. Cersosimo M., Brunetti A., Drioli E., Fiorino F., Dong G., Woo K.T., Lee J., Lee Y.M., Barbieri G., 2015. Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. J. Membrane Sci., 492, 257–262. DOI: 10.1016/j.memsci.2015.05.072.
  • 3. Chen Y., Zhao L., Wang B., Dutta P., Ho W., 2016. Amine-containing polymer/zeolite Y composite membranes for CO2/N2. J. Membrane Sci., 497, 21–28. DOI: 10.1016/j.memsci.2015.09.036.
  • 4. DOE NETL, 2013. Quality guidelines for energy systems studie: CO2 impurity design parameters. DOE/NETL- 341/011212. National Energy Technology Laboratory. Available at: https://www.netl.doe.gov/energy-analyses/temp/QGESSCO2ImpurityDesignParameters__092713.pdf
  • 5. Favre E., 2011. Membrane processes and postcombustion carbon dioxide capture: challenges and prospects. Chem. Eng. J., 171, 782–793. DOI: 10.1016/j.cej.2011.01.010.
  • 6. Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.D., 2008. Advances in CO2 capture technology – The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Control, 2, 9–20. DOI: 10.1016/S1750-5836(07)00094-1.
  • 7. Ishibashi M., Ota H., Akutsu N., Umeda S., Tajika M., Izumi J., Yasutake A., Kabata T., Kageyama Y., 1996. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers. Manage., 37, 929–933.
  • 8. Janusz-Cygan A., Jaschik M., Ta´nczyk M., Warmuzi´nski K., Wojdyła A., Pawełczyk R., 2016. Wydzielanie di tlenku węgla ze spalin energetycznych w komercyjnych modułach membranowych z włóknami pustymi. Przem. Chem., 95/9, 1833–1837. DOI: 10.15199/62.2016.9.35.
  • 9. Li M., Jiang W., He G., 2014. Application of membrane separation technology in post-combustion carbon dioxide process. Front. Chem. Sci. Eng., 8/2, 233–239. DOI: 10.1007/s11705-014-1408-z.
  • 10. Majchrzak A., Nowak W., 2017. Separation characteristics as a selection criteria of CO2 adsorbents. J. CO2 Util., 17, 69–79. DOI: 10.1016/j.jcou.2016.11.007.
  • 11. Merkel T.C., Lin H., Wei X., Baker R., 2010. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membrane Sci., 359, 126–139. DOI: 10.1016/j.memsci.2009.10.041.
  • 12. Pires J.C.M., Martins F.G., Alvim-Ferraz M.C.M., Simoes M., 2011. Recent developments on carbon capture and storage: an overview. Chem. Eng. Res. Des., 89, 1446–1460. DOI: 10.1016/j.cherd.2011.01.028.
  • 13. Powell C.E., Qiao G.G., 2006. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membrane Sci., 279, 1–49. DOI: 10.1016/j.memsci.2005.12.062.
  • 14. Rios R.B., Correia L.S., Bastos-Neto M., Torres A.E.B., Hatimondi S.A., Ribeiro A.M., Rodrigues A.E., Cavalcante Jr. C.L., de Azevedo D.C.S., 2014. Evaluation of carbon dioxide-nitrogen separation through fixed bed measurements and simulations. Adsorption, 20, 945–957. DOI: 10.1007/s10450-014-9639-3.
  • 15. Scholes C.A., Qader A., Stevens G.W., Kentish S.E., 2015. Membrane pilot plant trials of CO2 separation from flue gas. Greenhouse Gases Sci. Technol., 5, 229–237. DOI: 10.1002/ghg.1498.
  • 16. Song C., Sun Y., Fan Z., Liu Q., Ji N., Kitamura Y., 2018. Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. Int. J. Greenhouse Gas Control, 72, 74–81. DOI: 10.1016/j.ijggc.2018.03.009.
  • 17. Tańczyk M., Warmuziński K., Janusz-Cygan A., Jaschik M., 2011. Investigation of membrane performance in the separation of carbon dioxide. Chem. Process Eng., 32/4, 291–298. DOI: 10.2478/v10176-011-0023-5.
  • 18. Tańczyk M., Warmuzi´nski K., Jaschik M., Janusz-Cygan A., 2012. Hybrydowy proces wydzielania CO2 ze spalin. Przem. Chem., 91/12, 1439–1441.
  • 19. Tuinier M.J., Hamers H.P., van Sint Annaland M., 2011. Techno-economic evaluation of cryogenic CO2 capture - a comparison with absorption and membrane technology. Int. J. Greenhouse Gas Control, 5, 1559–1565. DOI: 10.1016/j.ijggc.2011.08.013.
  • 20. Wang Y., Zhao L., Otto A., Robinius M., Stolten D., 2017. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 114, 650–665. DOI: 10.1016/j.egypro.2017.03.1209.
  • 21. Warmuziński K., Janusz-Cygan A., Jaschik M., Ta´nczyk M., Wojdyła A., 2012. Badania komercyjnych modułów membranowych do wydzielania CO2 ze spalin. Przem. Chem., 91/12, 2416–2418.
  • 22. Warmuziński K., Ta´nczyk M., Jaschik M., 2015. Experimental study on the capture of CO2 from flue gas Rusing adsorption combined with membrane separation. Int. J. Greenhouse Gas Control, 37, 182–190. DOI: 10.1016/j.ijggc.2015.03.009.
  • 23. White L.S., Amo K.D., Wu T., Merkel T.C., 2017. Extended field trials of Polaris sweep modules for carbon capture. J. Membrane Sci., 542, 217–225. DOI: 10.1016/j.memsci.2017.08.017.
  • 24. Woo K.T., Dong G., Lee J., Kim J.S., Do Y.S., Lee W.H., Lee H.S., Lee Y.M., 2016. Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes. J. Membrane Sci., 510, 472–480. DOI: 10.1016/j.memsci.2016.03.033.
  • 25. Zhang X., Singh B., He X., Gundersen T., Deng L., Zhang S., 2014. Post-combustion carbon capture technologies: energetic analysis and life cycle assessment. Int. J. Greenhouse Gas Control, 27, 289–298. DOI: 10.1016/j.ijggc.2014.06.016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-226bf8ae-317c-400a-be7c-3e3283a4d5d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.