PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Slope stability analysis under rainfall infiltration condition using the minimum potential energy method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rainfall infiltration is a key factor to induce landslides, and it is important to study the rule of rainfall infiltration on slopes for the prediction and prevention of landslides. This paper combines the minimum potential energy method with the existing analytical solution of seepage field, and proposes a new method for unsaturated soil slopes under rainfall conditions. Specifically, the total potential energy function of the unsaturated soil slope is established by considering the real-time changes in system potential energy caused by rainfall infiltration. Additionally, the effects of rainfall infiltration on the shear strength of the soil, the self-weight of sliding mass and the seepage force are considered. The ratio of the slip resistance moment to the sliding moment is defined as the safety factor (SF) of the slope. The real-time evaluation of the stability of unsaturated soil slopes is realized during rainfall. The research results show that the results obtained by the proposed method are closer to the reference solutions. Meanwhile, the rules of rainfall intensity as well as slope angle on slope stability are conducted. Finally, the relationship between the sliding depth of failure surface and rainfall is also studied.
Rocznik
Strony
art. no. e117, 2023
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Nanjing Research Institute of Hydrology and Water Conservation Automation, Ministry of Water Resources, Nanjing 210012, People’s Republic of China
  • Danjiangkou Hydroelectric Power Plant, Hanjiang Group Corporation Ltd., Danjiangkou 442700, People’s Republic of China
autor
  • Danjiangkou Hydroelectric Power Plant, Hanjiang Group Corporation Ltd., Danjiangkou 442700, People’s Republic of China
autor
  • College of Mechanics and Materials, Hohai University, Nanjing 211100, People’s Republic of China
autor
  • College of Mechanics and Materials, Hohai University, Nanjing 211100, People’s Republic of China
Bibliografia
  • 1. Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev. 2020;207: 103225. https://doi.org/10.1016/j.earscirev.2020.103225.
  • 2. Chen X, Chen W. Gis-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena. 2021;196: 104833. https://doi.org/10.1016/j.catena.2020.104833.
  • 3. Wang B, Vardon P-J, Hicks M-A. Rainfall-induced slope collapse with coupled material point method. Eng Geol. 2018;239:1-12. https://doi.org/10.1016/j.enggeo.2018.02.007.
  • 4. Zeng L, Xiao L-Y, Zhang J-H, Gao Q-F. Effect of the characteristics of surface cracks on the transient saturated zones in colluvial soil slopes during rainfall. Bullet Eng Geol Environ. 2020;79(2):699-709. https://doi.org/10.1007/s10064-019-01584-1.
  • 5. Tsai T-L. The influence of rainstorm pattern on shallow landslide. Environ Geol. 2008;53(7):1563-9. https://doi.org/10.1007/s00254-007-0767-x.
  • 6. Zhang L-L, Zhang J, Zhang L-M, Tang W-H. Stability analysis of rainfall-induced slope failure: a review. Proc Inst Civil Eng Geotech Eng. 2011;164(5):299-316. https://doi.org/10.1680/geng.2011.164.5.299.
  • 7. Wang Y-X, Chai J-R, Cao J, Qin Y, Xu Z-G, Zhang X-W. Effects of seepage on a three-layered slope and its stability analysis under rainfall conditions. Nat Hazards. 2020;102(3):1269-78. https://doi.org/10.1007/s11069-020-03966-1.
  • 8. Tang GP, Huang JS, Sheng DC, Sloan SW. Stability analysis of unsaturated soil slopes under random rainfall patterns. Eng Geol. 2018;245:322-32. https://doi.org/10.1016/j.enggeo.2018.09.013.
  • 9. Pasierb B, Grodecki M, Gwóźdź R. Geophysical and geotechnical approach to a landslide stability assessment: a case study. Acta Geophysica. 2019;67(6):1823-34. https://doi.org/10.1007/s11600-019-00338-7.
  • 10. Hurley DG, Pantelis G. Unsaturated and saturated flow through a thin porous layer on a hillslope. Water Resour Res. 1985;21(6):821-4. https://doi.org/10.1029/WR021i006p00821.
  • 11. Tsai T-L, Chiang S-J. Modeling of layered infinite slope failure triggered by rainfall. Environ Earth Sci. 2013;68(5):1429-34. https://doi.org/10.1007/s12665-012-1840-7.
  • 12. Wang D-J, Tang H-M, Zhang Y-H, Li C-D, Huang L. An improved approach for evaluating the time-dependent stability of colluvial landslides during intense rainfall. Environ Earth Sci. 2017;76(8):1-12. https://doi.org/10.1007/s12665-017-6639-0.
  • 13. Oh S, Lu N. Slope stability analysis under unsaturated conditions: Case studies of rainfall-induced failure of cut slopes. Eng Geol. 2015;184:96-103. https://doi.org/10.1016/j.enggeo.2014.11.007.
  • 14. Wu L, Zhou Y, Sun P, Shi J, Liu G, Bai L. Laboratory characterization of rainfall-induced loess slope failure. Catena. 2017;150:1-8. https://doi.org/10.1016/j.catena.2016.11.002.
  • 15. Wang R, Wen S, Sun Z. Analytical solution of rainfall infiltration in unsaturated soil slopes considering initial water content distribution. KSCE J Civil Eng. 2022;26(11):4419-31. https://doi.org/10.1007/s12205-022-1750-5.
  • 16. Yao W, Li C, Zhan H, Zeng J. Time-dependent slope stability during intense rainfall with stratified soil water content. Bullet Eng Geol Environ. 2019;78(7):4805-19. https://doi.org/10.1007/s10064-018-01437-3.
  • 17. Li S, Cui P, Cheng P, Wu L. Modified green-ampt model considering vegetation root effect and redistribution characteristics for slope stability analysis. Water Resour Manag. 2022;36(7):2395-410. https://doi.org/10.1007/s11269-022-03149-6.
  • 18. Liu Z-Z, Yan Z-X, Qiu H. Zhan, Wang X-G, Li J-W. Stability analysis of an unsaturated soil slope considering rainfall infiltration based on the green-ampt model. J Mount Sci. 2020;17(10):2577-90. https://doi.org/10.1007/s11629-019-5744-9.
  • 19. Liu G-G, Li QH, Wang J-X. New green-ampt model based on fractional derivative and its application in 3d slope stability analysis. J Hydrol. 2021;603: 127084. https://doi.org/10.1016/j.jhydrol.2021.127084.
  • 20. Chen L, Young MH. Green-ampt infiltration model for sloping surfaces. Water Resour Res. 2006. https://doi.org/10.1029/2005WR0044 68.
  • 21. Zhang J, Huang HW, Zhang LM, Zhu HH, Shi B. Probabilistic prediction of rainfall-induced slope failure using a mechanics-based model. Eng Geol. 2014;168:129-40. https://doi.org/10.1016/j.enggeo.2013.11.005.
  • 22. Hu GB, Wen SJ, Sun HZ, Sun JP. Stability analysis method for slope reinforced with anti-slide pile based on minimum potential energy principle. Electron J Geotech Eng. 2015;20(23):12359-476.
  • 23. Sun JP, Yu TT, Dong PT. Evaluation of 3D slope stability based on the minimum potential energy principle. Comp Geotech. 2022;146: 104717. https://doi.org/10.1016/j.compgeo.2022.104717.
  • 24. Mauldon M, Ureta J. Stability analysis of rock wedges with multiple sliding surfaces. Geotech Geol Eng. 1996;14(1):51-66. https://doi.org/10.1016/0148-9062(96)83505-4.
  • 25. Sun JP, Yu TT, Dong PT. Pseudo-dynamic analysis of reinforced slope with anchor cables. Soil Dynam Earthquake Eng. 2022;162: 107514. https://doi.org/10.1016/j.soildyn.2022.107514.
  • 26. Xiong S, Yao W-M, Li C-D. Stability evaluation of multilayer slopes considering runoff in the saturated zone under rainfall. Eur J Environ Civil Eng. 2021;25(9):1718-32. https://doi.org/10.1080/19648189.2019.1600038.
  • 27. Yang X, Diao X, Zhou T, Hu F, Wang S. Study on the stability of accumulated layer landslide under the coupling action of earthquake and rainfall. KSCE J Civil Eng. 2023;27(1):98-108. https://doi.org/10.1007/s12205-022-0110-9.
  • 28. Fang W, Esaki T. Rapid assessment of regional superficial landslide under heavy rainfall. J Central South Univ. 2012;19(9):2663-73. https://doi.org/10.1007/s11771-012-1325-6.
  • 29. Vanapalli S, Fredlund D, Pufahl D, Clifton A. Model for the prediction of shear strength with respect to soil suction. Canadian Geotech J. 1996;33(3):379-92. https://doi.org/10.1139/t96-060.
  • 30. Travis QB, Houston SL, Marinho FA, Schmeeckle M. Unsaturated infinite slope stability considering surface flux conditions. J Geotech Geoenviron Eng. 2010;136(7):963-74. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000301.
  • 31. Wang L, Hu W, Sun D-A, Li L. 3d stability of unsaturated soil slopes with tension cracks under steady infiltrations. Int J Num Analyt Methods Geomech. 2019;43(6):1184-206. https://doi.org/10.1002/nag.2889.
  • 32. Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44(5):892-8. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
  • 33. Huang C-C, Tsai C-C, Chen Y-H. Generalized method for three-dimensional slope stability analysis. Journal of geotechnical and geoenvironmental engineering. 2002;128(10):836-48. https://doi.org/10.1061/(asce)1090-0241(2002)128:10(836).
  • 34. Qiu X, Li J-H, Jiang H-B, Ou J, Ma J-Q. Evolution of the transient saturated zone and stability analysis of slopes under rainfall conditions. KSCE Journal of Civil Engineering. 2022;26(4):1618-31. https://doi.org/10.1007/s12205-022-0733-x.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-226b8b6e-cbd8-442b-8388-22834c49a0c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.