PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie modelu LandscapeDNDC do symulacji warunków wodnych gleby oraz plonu roślin uprawnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of LandscapeDNDC Model for Simulating Soil Water Content and Crop Yield Quantity
Języki publikacji
PL
Abstrakty
EN
The purpose of the work was to assess the results of simulation of soil water content (SWC) and the simulated crop yield quantity using a module LandscapeDNDC model which belongs to the family of DNDC models. The assessment was conducted on the outcome data gathered during the simulation carried out in the experimental plots of Agricultural Experimental Station in Brody (nearby Poznań, Poland) in the period of 28 March to 13 August 2012. The crops grown in the experimental fields were as follows: alfalfa, potatoes, winter wheat, rye and spring barley. Average daily content of water in the soil at the depth of 10 cm from 28 March to 13 August 2012 was 12.95 ± 0.52% (CI = 95%). This value was measured by the sensors installed in the automatic measurement site located 20–60 meters from individual experimental fields. This area in 2011/2012 was overgrown by low vegetation (monocotyledons and dicotyledons). Simulated average value of SWC for the experimental plots in the same period was 12.43 ± 0.85%. These results lead to a conclusion that the model correctly simulates water conditions of the soil. Simulations conducted in LandscapeDNDC brought the crop yield results which amounted from 64.4 to 116.1% of the specific actual crop yield. The crop yield quantity of spring barley was simulated most accurately, then the crops of alfalfa, winter wheat and potatoes. The measured quantity of winter rye crop yield (7.1 t ha-1) differs from national average quantity which was 2.4 t ha-1 in the years from 1999 to 2011. Such a big crop yield obtained in the experimental plot is rare in farming conditions, which results in the overestimation of the crop yield quantity by the model.
Rocznik
Strony
1937--1951
Opis fizyczny
Bibliogr. 34 poz., tab., rys.
Twórcy
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Niemcy
autor
  • Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Niemcy
  • Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Niemcy
Bibliografia
  • 1. Baldocchi D., Valentini R., Running S., Oechel W., Dahlman R.: Strategies for measuring and modeling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global change biology. Vol. 2, 159–168 (1996).
  • 2. Blecharczyk A.: Reakcja żyta ozimego i jęczmienia jarego na system następstwa roślin i nawożenie w doświadczeniu wieloletnim. Roczniki Akademii Rolniczej w Poznaniu. Rozprawy naukowe. Zeszyt 236 (2002).
  • 3. Bogner J., Spokas K., Burton E., Sweeney R., Corona V.: Landfills as atmospheric methane sources and sinks. Chemosphere. Vol. 31, no. 9, 4119–4130 (1995).
  • 4. Chirinda N., Kracher D., Laegdsmand M., Porter J.R., Olesen J.E., Petersen B.M., Doltra J., Kiese R., Butterbach-Bahl K.: Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant and soil. Vol. 343, 139–160 (2011).
  • 5. Cole C.V., Flach K., Lee J., Sauerbeck D., Stewart B.: Agricultural sources and sinks of carbon. Water, air, and soil pollution. Vol. 70, 111–122 (1993).
  • 6. Denman K.L., Brasseur G., Chidthaisong A., Ciasis P., Cox P.M., Dickinson R.E., Hauglustaine D., Heinze C., Holland E., Jacob D., Lohmann U., Ramachandran S., da Silva Dias P.L., Wofsy S.C., Zhang X. Couplings Between Changes in the Climate System and Biogeochemistry. W: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Red. S. Solomon et al.). Cambridge University Press, 2007.
  • 7. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Haywood D.W., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R.: Changes in atmospheric constituents and in radiative forcing. W: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Red. S. Solomon et al.)., Cambridge University Press. 2007 [online: http://www.ipcc.ch/pdf/¬assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf]
  • 8. Freney J.R.: Emission of nitrous oxide from soils used for agriculture. Nutrient Cycling in Agroecosystems. Vol. 49, 1–6 (1997).
  • 9. GUS. online:www.stat.gov.pl
  • 10. Haas E., Klatt S., Frohlich A., Kraft P., Werner C., Kiese R., Grote R., Breuer L., Butterbach-Bahl K.: LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landscape ecology, 2012.
  • 11. IPCC.: Guidelines for National Greenhouse Gas Inventories. Red. Eggle¬ston S, Buendia L., Miwa K., Ngara T., Tanabe K., 2006.
  • 12. Kiese R., Heinzeller C., Werner C., Wochele S., Grote R., Butterbach-Bahl K.: Quantification of nitrate leaching from German forest cosystems by use of a process oriented biogeochemical model. Environmental Pollution. Vol. 159, 3204–3214 (2011).
  • 13. Kiese R., Li C., Hilbert D.W., Papen H., Butterbach-Bahl K.: Regional application of PnET-N-DNDC for estimating the N2O Skurce strength of tropi cal rainforests in the Wet Tropics of Australia. Global Change Biology. Vol. 11, 128–144 (2005).
  • 14. KOBIZE: Krajowy raport inwentaryzacyjny 2011. Inwentaryzacja gazów cieplarnianych w Polsce dla lat 1988–2009. 2011. [online: http://www.ka¬shu-e.pl/materialy/Inwentaryzacje_krajowe/NIR_2011_Polska_25.05.2011.pdf]
  • 15. KOBIZE: Poland’s national inventory report 2010. Greenhouse Gas Inventory for 1988–2008. 2010. [online: http://www.kashue.pl/materialy/Inwentaryzacje_krajowe]
  • 16. Leśny J.: Bilans cieplny powierzchni czynnej wybranych upraw w Wielkopolsce. Rozprawy naukowe. Uniwersytet Przyrodniczy w Poznaniu. Zeszyt 429 (2011).
  • 17. Li C., Aber J., Stange F., Butterbach-Bahl K., Papen H.: A process-oriented model of N2O and NO emissions from forest soils: 1 model development. Journal of geophysical research. Vol. 105, 4369–4384 (2000).
  • 18. Li C., Frolking S., Frolking T.A.: A model of nitrous-oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity. Journal of Geophysical Research. Vol. 97, 9759–9776 (1992).
  • 19. Li C., Salas W., Zhang R., Krauter C., Rotz A., Mitloehner F.: Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutrient Cycling in Agroecosystems. Vol. 93, 163–200 (2012).
  • 20. Maljanen M., Hytonen J., Martikainen P.J.: Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils. Plant and soil. Vol. 231, 113–121 (2001).
  • 21. Mihailovic D.T., Lalic B., Leśny J., Olejnik J.: Modeling surface fluxes over a sparse vegetation. Archives of Biological Sciences. Vol. 64, 1533–1542 (2012).
  • 22. Mihailovic D.T., Lazic J., Leśny J., Olejnik J., Lalic B., Kapor D., Cirisan A.: A new design of the LAPS land surface scheme for use over and through heterogeneous and non-heterogeneous surfaces: Numerical simulations and tests. Theor. Appl. Climatol. Vol. 100, 299–323 (2010).
  • 23. Mosier A.R.: Nitrous oxide emissions from agricultural soils. Fertilizer Research. Vol. 37, 191–200 (1994).
  • 24. Norman J.M., Kucharik C.J., Gower S.T., Baldocchi D.D., Crill P.M., Rayment M., Savage K., Striegl R.G.: A comparison of six methods for measuring soil-surface carbon dioxide fluxes. Journal of Geophysical Research. Vol. 102, 28771–28777 (1997).
  • 25. Nyćkowiak J., Leśny J.: Verification of data quality from automatic weather stations. Acta Agrophysica. Vol. 184, 218–228 (2010).
  • 26. Nyćkowiak J.: Rola N2O w efekcie cieplarnianym. Doktorant a innowacyjność podejmowanych tematów badań. Cz. 2. CreativeTime. 2011.
  • 27. Ravishankara A.R., Daniel J.S., Portmann R.W.: Nitrous oxide (N2O): the dominant ozone-depleting substancje emitted in the 21st Century. Science. Vol. 326, no. 5949, 123–125 (2009).
  • 28. Robertson G.P., Groffman P.: Nitrogen transformations. W: Soil microbiology, ecology, and biochemistry. Elsevier. New York. 341–364 (2007).
  • 29. Sakowska K., Juszczak R., Uździcka B., Olejnik J.: Zmienność dobowa strumieni CO2 wymienianych między atmosferą a różnymi uprawami rolniczymi. Woda-Środowisko-Obszary wiejskie. t. 12, z. 2, 221–244 (2012).
  • 30. Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O.: Agriculture. W: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A.). Cambridge University Press, 2007.
  • 31. Stange F., Butterbach-Bahl K.,Papen H., Zechmeister-Boltenstern S., Li C., Aber J.: A process-oriented model of N2O and NO emissions from forest soils: 2 sensitivity analysis and validation. Journal of geophysical research. Vol. 105, 4385–4398 (2000).
  • 32. Swinbank W.C.: The measurement of vertical transfer of heat and water vapour by eddies in the Lower atmosphere. Journal of Meteorology. Vol. 8, 135–145 (1951).
  • 33. Topp E. i Pattey E.: Soils as sources and sinks for atmospheric methane. Canadian journal of soil science. Vol. 77, 167–178 (1997).
  • 34. Zhang Y., Li C., Trettin C.C., Li H., Sun G.: An integrated model of soil, hydrology, and vegetation for carbon Dynamics in wetland ecosystems. Global Biogeochemical Cycles. Vol. 16, No. 4, 1–17 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2262a946-d0b1-44e6-85f9-a34d11c783b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.