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Abstract. In this paper the fractional Euler-Lagrange edquaidf ordera [1(0, 1] in the
finite time interval is considered. This equatigntiansformed to the integral form by the
use of the fractional integral operators. Next, ibenerical approximation of the analytical
solution is presented. Finally, some examples ofienical solutions are presented.
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Introduction

The fractional Euler-Lagrange equation (FELE) isoaginary fractional differ-
ential equation with composition of the left ané tight derivatives involved. This
type of equations is obtained when the minimumoactrinciple and fractional
integration by parts rule are applied [1]. Fractibdifferential equations are in
general very difficult to solve (see [2, 3] for seraolved examples). Moreover,
FELE presents an asymmetry: left and right fractiaterivatives are involved and
it is an additional drawback for the explicit congaion of a solution [4, 5]. Each
of these methods leads to a series solution, ysuaikrms of special functions. On
the other hand, computational methods can providetigal approximations of
these analytic solutions. Numerous papers have degoted to the numerical
schemes for FELE (see [6-9]). In comparison to mmavious works [7, 9], in this
paper the solution of FELE deals with the approtiomaof the analytical solution
of FELE based on the numerical evaluation of frawl integrals.

1. Basic definitions

In this section, we recall the definitions of thactional integrals and derivatives.
The left and right Riemann-Liouville fractional @grals are defined as follows
(see [2] for all the definitions used here):
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e 1 & f(1)
I0+f(t)—rq)'([(t_T)1_adT, fort>0 (1)
e 1% f(1)
Ibf(t)—r(a)!(r_t)l_a dr, fort<b )

wherel () denotes the Gamma function a1l ,. Using (1) and (2) one can

define fractional derivatives. For (0, 1] the left Riemann-Liouville (3) and the
right Caputo (4) derivatives are defined as

Lo
D f(t)=DI5 f (t) = F(ll—a)%-([(t _(30 dr, fort>0 (3)
‘D f(t)=-1"Df(t)= r(;-la)i(:'—(:)“ dr, fort<b (4)

2. Statement of the problem

Let us consider the following function@with fixed a O (0, 1] and the parame-
ter A\OO defined by [5]

S:IE(D(‘; f)z—%fz}dt 5)

Here an unknown functiohis absolutely continuous on the interval D, Apply-
ing the minimum action principle and fractionaldgtation by parts formula [1]
we obtain the following Euler-Lagrange equation

‘D DS f(t)-Af(t)=0 (6)
In this paper we consider Eq. (6) with boundaryditions
t(0)=0, f(b)=L ()
We can write Eq. (6) in the integral form [5]
() =MEIEf (1) =ct® (8)

wherec, is a real constant. Next, by using the Babenkg'simlic calculus method
[3] for the composition of the fractional integderators we have

ft)=(1-M218) ot 9)
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Using the binomial expansiorfl- x)_lzz:’]zoxm, for|x<1) for the operator

-1
(1—)\I o I;’) we can write solution (9) as

f(t) =gy Am(1a1e )"t :c{t“ +i)\m(|g+|§)mt°j (10)

m=0 m=1

We have to choose values of parameters andb properly to ensure conver-
gence of the series in (10).
The coefficient, is determined by the boundary conditions (7)

c=— L (11)

YAr(1e12) o

m=0

Then the analytical solution (10) has the form

2A"(1G15
f(t) =L (12)
2,

ForA = 0 Eq. (12) simplifies to the fornfi (t) = Lt® /b®.

The considered problem in this paper is an estonatif (I;I:,)mt“ in (12)
form=1,...p0. Form = 1, the analytical form O(I;I;)t" can be expressed by
the formula

(131 )e =G§;[[°‘i§§,’jfg !

t

— 13
b} (13)
where G;;“ is the Meijer-G function defined as follows [2]
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From the numerical point of view approximation betMeijer-G function is
very complicated. For this reason we propose themenerical method.

3. Numerical solution

In order to approximate the analytical solution)(&2(6), we use the homoge-
nous grid of nodes

b

0=t, <t <t,<...<t <t,,<...<ty =b, t =iAt, At = N (15)
The value of at nodg; is denoted by =f(t),i =0, ...,N.
It will be convenient to introduce the auxiliarynfttionsg™
g"(t)=(1212)"t", m= 0,.. (16)
The following recurrence formula is true
o°(t)=t", g"(t)=(121)g™"(t), form>0 (17)

At first we determine numerical schemes for appr@tion of both fractional
operators occurring in Eq. (10). These schemebased on the trapezoidal rule of

integration [9]. The integral (1) vanishes at nagdd ;. f (t)L:t =0), while at nodes
t,i =1,...N, it can be approximated by the formula
f
( dt

10 = r 10‘) A (t f—(rr))l_a = F(lo() JIZ:I ‘:Hl (t —TT))l_a

- 1 iifj-‘-fjﬂj.tm 1 dr

r G) =0 2 t; (ti __l_)l—cx
1§ (a1
i i+t Ty d 18
ZF(G) J.:0( j + J+1)jjm (iAt__[)l—q T ( )
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The coefficientsv; (including the case= 0) are of the form

0 fori=0and = 0
_ (4 it (i-2) fori>0and = 0 (19)
Y2 (a+1) [(i-j+2)° ~(i-j-1)° fori>0andkj<i-
1 fori >0 and =i

Using a similar approach, we determine a discrate fof the integral (2). This
operator at nodé has valuel ® f ()] =0, while at the nodet, i = 0,...N-1
we have

_ 1 N fj + fj+1J-tj+1 f(T) dt
Ma)s 2 Ju (T_ti)l‘“
1 N2 (j+y)at 1
2r () j:i( i ‘”)LM (t-iat)™ ar (0)
(A1)

where the coefficientg ; (including the case= N) look as follows

0 fori=N andj =N
- (at)®  [(N=i)*=(N-i-2)* fori<N andj=N 1)
YoM (a4 1) (j-i+2)° —(j-i-1)° fori<N and+ Ej<N-
1 fori <N andj =i

From the computational point of view, we proposefthilowing algorithm:
Algorithm 1:

Input: a,A,b,L,N ;e
Output: fy, f,....f
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m:=0
fori:=0toN do
g"=(ib/N)°
f"=g"
repeat
m:=m+1
fori==0toN do
N
g™ => 9", /v, -seeEq.(2]
j=i
fori==0toN do

g" :=Z;)g§e"“ij llw; -seeEq.(19
J:

fori:=0toNdo
fim:: fim+)\mgim
until (Am_max g <s)
i=0,...N
fori:=0toN do
f = Lfi—
fy

Array f ™ stores the partial sum (for indexes from Qripof the infinite series
occurring in (12). Arrayg®™ is an auxiliary array. In order to reduce the catap
tional memory, one can use only one storage ajfayverwritten in every calcula-
tion stepm=1, 2, ..., in the main loop. Parametes the threshold to terminate of
iteration in the main loop. The running time of greposed algorithm iI©(Mmyax N)
where mpay is the value of indexn when the termination of iteration occurred.
The value oim.,,x depends on the parametexsa, b, N, €.

4. Results

Figure 1 presents plots of function (16) fo=1, m O {1, 2, 5, 10} and
a 0{0.1, 0.2, 0.4, 0.6, 0.8, 1} on the basis of nuroaricalulations of Section 3
(N = 1024). One can note that if the valuenoincreases then values of function

g"(t) decrease, and for example fore= 100: max,,., g"°(t) <9.710" fora = 0.1,
MaXy.; 9°%(t) <3.1:107% for a = 0.6, andmax,,., g'°(t) <4.910* for a = 1.
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Comparing plots of'(t) with plots of function (13) one can see that bpltits are
the same (with the exceptions of the influencewherical errors).

Figures 2 and 3 present the numerical evaluatiofulétion (12) forb = 1,
L = 1, with the parametex O {0.1, 0.2, 0.4, 0.6, 0.8, 1} andl O {0.5, 1} or
A O {-0.5,-1}, respectively. Calculations were performed famerical parame-
tersN = 1024 and = 10",
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Fig. 2. Numerical solution of Eq. (6) for boundagnditionsf(0) = 0,f(1) = 1,
and forA 0{0.5, 1} and different values af
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Fig. 3. Numerical solution of Eq. (6) for boundagnditionsf(0) = 0,f(1) = 1,
and forA 0{-0.5,-1} and different values af

Conclusions

In this paper the numerical algorithm for approxima of the analytical solu-
tion of the fractional Euler-Lagrange equationriegented. In comparison with our
previous numerical methods [7, 9], the presentralyn does not require solving
the system of equations. The computational methoelatively fast.
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