PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High quality multi-zone and 3d CFD model of combustion in marine diesel engine cylinder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a 3D model of the processes taking place in the cylinder of a large 4-stroke marine engine. The model is based on CFD calculations performed on the moving mesh. The modelling range includes the full duty cycle (720° crankshaft position) and the complete geometry of the cylinder with inlet and exhaust ducts. The input data, boundary conditions and validation data were obtained by direct measurements on the real object. Fuel injection characteristics were obtained by Mie scattering measurements in a fixed-volume chamber. The modelling results have been validated in terms of the pressure characteristics of the engine’s cylinder within the entire range of its loads. The mean error did not exceed 1.42% for the maximum combustion pressure and 1.13% for the MIP (Mean Indicated Pressure). The model was also positively validated in terms of the O2 and NOx content of the exhaust gas. The mean error in this case was 1.2% for NOx fractions in the exhaust gas and 0.4% for O2 fractions. The complete model data has been made available in the research data repository on an open access basis.
Rocznik
Tom
Strony
61--67
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Central Office of Measures POLAND, Poland
  • Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
autor
  • Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • Gdansk University of Technology, Poland
Bibliografia
  • 1. M. H. Ghaemi, “Performance and emission modelling and simulation of marine diesel engines using publicly available engine data,” Polish Maritime Research, vol. 28(4), pp. 63‒87, 2021. https://doi.org/10.2478/pomr-2021-0050.
  • 2. J. Shu, J. Fu, J. Liu, Y. Ma, S. Wang, B. Deng, and D. Zeng, “Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model,” Applied Energy, vol. 233–234, pp. 182‒195, 2019. https://doi. org/10.1016/j.apenergy.2018.10.040.
  • 3. T. Poinsot and D. Veynante, Theoretical and numerical combustion. Edwards, 2005.
  • 4. F. Payri, P. Olmeda, J. Martín, and A. García, “A complete 0D thermodynamic predictive model for direct injection diesel engines,” Applied Energy, vol. 88, pp. 4632–4641, 2011. https:// doi.10.1016/j.apenergy.2011.06.005.
  • 5. K. K. Kuo, Principles of combustion. New Jersey, Wiley, 2005.
  • 6. S. Wang and L. Yao, “Effect of engine speeds and dimethyl ether on methyl decanoate HCCI combustion and emission characteristics based on low-speed two-stroke diesel engine,” Polish Maritime Research, vol. 27(2), pp. 85‒95, 2020. https:// doi.org/10.2478/pomr-2020-0030.
  • 7. H. Eichlseder and A. Wimmer, “Potential of IC-engines as minimum emission propulsion system,” Atmos. Environ., vol. 37(37), pp. 5227–5236, 2003. https://doi.org/10.1016/j. atmosenv.2003.05.001.
  • 8. J. Carlton, Marine Propellers and Propulsion, 3rd ed. Elsevier Ltd., 2012.
  • 9. A. Sarvi, C. J. Fogelholm, and R. Zevenhoven, “Emissions from large-scale medium-speed diesel engines: 1. Influence of engine operation mode and turbocharger,” Fuel Processing Technology, vol. 89, pp. 510–519, 2008. https://doi.org/10.1016/j. fuproc.2007.10.006.
  • 10. D. Agarwal, S. K. Singh, and A. K. Agarwal, “Effect of exhaust gas recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine,” Applied Energy, vol. 88, pp. 2900–2907, 2011. https://doi. org/10.1016/j.apenergy.2011.01.066.
  • 11. A. Sarvi, C. J. Fogelholm, and R. Zevenhoven, “Emissions from large-scale medium-speed diesel engines: 2. Influence of fuel type and operating mode,” Fuel Processing Technology, vol. 89, pp. 520–527, 2008. https://doi.org/10.1016/j.fuproc.2007.10.005.
  • 12. O. Colin and A. Benkenida, “The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion,” Oil & Gas Science and Technology, vol. 59(6), pp. 593–609, 2004. https://doi.org/10.2516/ogst:2004043.
  • 13. C. Rodriguez, M. Lamas, J. Rodriguez, and A. Abbas, “Analysis of the pre-injection system of a marine diesel engine through multiple-criteria decision-making and artificial neural networks,” Polish Maritime Research, vol. 28(4), pp. 88‒96, 2021. https://doi.org/10.2478/pomr-2021-0051.
  • 14. Z. Korczewski, “Test method for determining the chemical emissions of a marine diesel engine exhaust in operation,” Polish Maritime Research, vol. 28(3), pp. 76‒87, 2020. https:// doi.org/10.2478/pomr-2021-0035.
  • 15. Z. Yang, Q. Tan, and P. Geng, “Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel,” Polish Maritime Research, vol. 26(1), pp. 153‒161, 2011. https://doi.org/10.2478/pomr-2019-0017.
  • 16. R. Zhao, L. Xu, X. Su, S. Feng, C. Li, Q. Tan, and Z. Wang, “A numerical and experimental study of marine hydrogen– natural gas–diesel tri-fuel engines,” Polish Maritime Research, vol. 27(4), pp. 80‒90, 2020. https://doi.org/10.2478/ pomr-2020-0068.
  • 17. G. Alegret, X. Llamas, M. Vejlgaard-Laursen, and L. Eriksson, “Modeling of a large marine two-stroke diesel engine with cylinder bypass valve and EGR system,” IFAC-PapersOnLine, vol. 48(16), pp. 273‒278, 2015. https://doi.org/10.1016/j. ifacol.2015.10.292.
  • 18. F. Payri, J. Benajes, X. Margot, and A. Gil, “CFD modeling of the in-cylinder flow in direct-injection diesel engines,” Computers & Fluids, vol. 33, pp. 995–1021, 2004. https://doi.org/10.1016/j. compfluid.2003.09.003.
  • 19. Z. Sahin and O. Durgun, “Multi-zone combustion modeling for the prediction of diesel engine cycles and engine performance parameters,” Applied Thermal Engineering, vol. 28, pp. 2245–2256, 2008. https://doi.org/10.1016/j.applthermaleng.2008.01.002.
  • 20. J. Kowalski, Complete input data to CFD 3D model of combustion in the large marine 4-stroke engine, 2018. [Dataset]. https://doi. org/10.34808/0kbc-ny83.
  • 21. J. Kowalski, “An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions,” Appl. Therm. Eng., vol. 65(1–2), pp. 469–79, 2014. https://doi.org/10.1016/j.applthermaleng.2014.01.028.
  • 22. J. Kowalski and P. Jaworski, “3D mesh model for RANS numerical research on marine 4-stroke engine,” Journal of Polish CIMAC, vol. 9(1), pp. 87–94, 2014.
  • 23. S. N. Soid and Z. A. Zainal, “Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review,” Energy, vol. 36(2), pp. 724– 741, 2011. https://doi.org/10.1016/j.energy.2010.11.022.
  • 24. E. Delacourt, B. Desmet, and B. Besson, “Characterisation of very high pressure diesel sprays using digital imaging techniques,” Fuel, vol. 84(7–8), pp. 859–867, 2005. https://doi. org/10.1016/j.fuel.2004.12.003.
  • 25. J. Grochowalska, J. Kowalski, Ł. J. Kapusta, and P. Jaworski, The experimental results of diesel fuel spray with marine engine injector, 2021. [Dataset]. https://doi.org/10.34808/c3aw-dq41.
  • 26. A. B. Liu and R. D. Reitz, Modeling the Effects of Drop Drag and Break-up on Fuel Sprays. SAE Technical Paper. 1993; 930072.
  • 27. T. Wakisaka et al., Numerical Prediction of Mixture Formation and Combustion Processes in Premixed Compression Ignition Engines. COMODIA, 2001.
  • 28. J. K. Dukowicz, Quasi-steady droplet change in the presence of convection. Informal Report, Los Alamos Scientific Laboratory, LA7997-MS.
  • 29. P. O'Rourke and A. Amsden, The TAB Method for Numerical Calculation of Spray Droplet Breakup. SAE Technical Paper, 1987, 872089.
  • 30. C. C. Chu and M. L. Corradini, “One-dimensional transient fluid model for fuel/coolant interaction analysis,” Nuclear Science and Engineering, vol. 101, pp. 48–71, 1989.
  • 31. C. Habchi and D. Verhoeven, Modeling Atomization and Break Up in High-Pressure Diesel Sprays. SAE Technical Paper, 1997, 970881.
  • 32. F. E. Marble and J. E. Broadwell, The Coherent Flame Model for Turbulent Chemical Reactions. Technical Report TRW-293146001-RU-00, USA, 1977.
  • 33. R. Mobasheri, Z. Peng, and S. M. Mirsalim, “Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling,” International Journal of Heat and Fluid Flow, vol. 33, pp. 59–69, 2012. https://doi.org/10.1016/j. ijheatfluidflow.2011.10.004.
  • 34. R. Mobasheri and Z. Peng, “CFD investigation into diesel fuel injection schemes with aid of homogeneity factor,” Computers & Fluids, vol. 77, pp. 12–23, 2013. https://doi.org/10.1016/j. compfluid.2013.02.013.
  • 35. H. Taghavifar, S. Khalilarya, and S. Jafarmadar, “Engine structure modifications effect on the flow behavior, combustion, and performance characteristics of DI diesel engine,” Energy Conversion and Management, vol. 85, pp. 20–32, 2014. https:// doi.org/10.1016/j.enconman.2014.05.076.
  • 36. S. Jafarmadar, “Exergy analysis of hydrogen/diesel combustion in a dual fuel engine using three-dimensional model,” International Journal of Hydrogen Energy, vol. 39, pp. 9505–9514, 2014. https:// doi.org/10.1016/j.ijhydene.2014.03.152.
  • 37. W. Park, J. Lee, K. Min, J. Yu, S. Park, and S. Cho, “Prediction of real-time NO based on the in-cylinder pressure in diesel engines,” in Proc. of the Combustion Institute, vol. 34, pp. 3075– 3082, 2013. https://doi.org/10.1016/j.proci.2012.06.170.
  • 38. R. Lebas, T. Menard, P. A. Beau, A. Berlemont, and F. X. Demoulin, “Numerical simulation of primary break-up and atomization: DNS and modelling study,” International Journal of Multiphase Flow, vol. 35, pp. 247–260, 2009. https://doi. org/10.1016/j.ijmultiphaseflow.2008.11.005.
  • 39. K. Hanjalić, M. Popovac, and M. Hadžiabdić, “A robust near-wall elliptic relaxation eddy-viscosity turbulence model for CFD,” International Journal of Heat and Fluid Flow, vol. 25(6), pp. 1047– 1051, 2004. https://doi.org/10.1016/j.ijheatfluidflow.2004.07.005.
  • 40. B. Kaludercic, “Parallelisation of the Lagrangian model in a mixed Eulerian–Lagrangian CFD algorithm,” J. Parallel Distrib. Comput., vol. 64(2), pp. 277–284, 2004. https://doi.org/10.1016/j. jpdc.2003.11.010.
  • 41. J. Donea and A. Huerta, Finite Element Methods for Flow Problems. Wiley, 2003.
  • 42. R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow. Wiley, 2004.
  • 43. R. J. Goldstein, W. E. Ibele, and S. V. Patankar, “Heat transfer – A review of 2003 literature,” Int. J. Heat Mass Transf., vol. 49(3–4), pp. 451–534, 2006. https://doi.org/10.1016/j. ijheatmasstransfer.2005.11.001.
  • 44. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer. Wiley, 2001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-225bb704-2e5a-41a0-b96c-73cb987993c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.