PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction and dynamic identification of aeroelastic test models for flexible roofs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aeroelastic wind tunnel testing of flexible roofs made of hyperbolic paraboloid cable nets is a challenging task for designers and researchers, with very limited documented experiences in the literature. The reduced-scale model construction and its dynamic identification are the main issues to address when approaching this problem, mainly because of (i) the very small mass of the roof, (ii) the strict aeroelastic criteria to satisfy and (iii) a large number of very closely spaced significant natural frequencies. To suggest an approach to follow to investigate the wind-structure interaction for this structural typology, this paper discusses the aeroelastic scaling, the aeroelastic model construction, the dynamic modal identification and the FEM predictive numerical modelling of hyperbolic paraboloid roofs (HPRs) with square, rectangular and circular plan shapes and two different curvatures. Modal identification is especially challenging due to the presence of several closely spaced modes and it is here tackled by different methods such as Welch’s method, random decrement technique (RDT), Empirical mode decomposition with a time-varying filter (TVF-EMD) and frequency domain decomposition method (FDD). The satisfying accuracy of the aeroelastic scaling has been verified by comparing the wind-induced vertical displacements of the prototypes against those of the experimental models. Furthermore, an extensive qualitative investigation of the natural mode shapes has been carried out revealing that test models reproduce most of the prototype modes.
Rocznik
Strony
art. no. e16, 2023
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Chair of Metal Structure L‑3, Department of Civil Engineering, Cracow University of Technology, Krakow, Poland
autor
  • Department of Civil and Environmental Engineering, Western University, London, ON, Canada
autor
  • Department of Civil and Environmental Engineering, Western University, London, ON, Canada
  • Wind Engineering Laboratory, Cracow University of Technology, Krakow, Poland
  • Wind Engineering Laboratory, Cracow University of Technology, Krakow, Poland
  • Department of Civil and Environmental Engineering, University of Perugia, Via G Duranti 93, Perugia, Italy
  • Department of Civil and Environmental Engineering, University of Perugia, Via G Duranti 93, Perugia, Italy
Bibliografia
  • 1. Vassilopoulou I, Gantes CJ. Influence of a deformable contour ring on the nonlinear dynamic response of cable nets. Structures. 2016;6:146-58.
  • 2. Vassilopoulou I, Petrini F, Gantes CJ. Nonlinear dynamic behavior of cable nets subjected to wind loading. Structures. 2017;10:170-83.
  • 3. Rizzo F, Sepe V, Ricciardelli F, Avossa AM. Wind pressures on a large span canopy roof. Wind Struct. 2020;30(2):000-000.
  • 4. Rizzo F, Caracoglia L. Examination of artificial neural networks to predict wind-induced displacements of cable net roofs. Eng Struct. 2021;245:112956.
  • 5. Rizzo F, Sepe V. Static loads to simulate dynamic effects of wind on hyperbolic paraboloid roofs with square plan. J Wind Eng Ind Aerodyn. 2015;137:46-57.
  • 6. CNR (National Research Council of Italy), 2018. CNRDT207/2018. Guide for the Assessment of Wind Actions and Effects on Structures.
  • 7. Rizzo F, D’Asdia P, Ricciardelli F, Bartoli G. Characterization of pressure coefficients on hyperbolic paraboloid roofs. J Wind Eng Ind Aerodyn. 2012;102:61-71.
  • 8. Liu M, Chen X, Yang Q. Characteristics of dynamic pressures on a saddle type roof in various boundary layer flows. J Wind Eng Ind Aerodyn. 2016;150:1-14.
  • 9. Colliers J, Mollaert M, Vierendeels J, De Laet L. Collating wind data for doubly-curved shapes of tensioned surface structures (round robin exercise 3). Procedia Eng. 2016;155:152-62.
  • 10. Colliers J, Mollaert M, Degroote J, De Laet L. Prototyping of thin shell wind tunnel models to facilitate experimental wind load analysis on curved canopy structures. J Wind Eng Ind Aerodyn. 2019;188:308-22.
  • 11. Colliers J, Degroote J, Mollaert M, De Laet L. Mean pressure coefficient distributions over hyperbolic paraboloid roof and canopy structures with different shape parameters in a uniform flow with very small turbulence. Eng Struct. 2020;205: 110043.
  • 12. Rizzo F, Zazzini P, Montelpare S, Ricciutelli A. Investigation of wind induced vibration and acoustic performance interactions for a flexible roof through multiphysics approach. J Build Perform Simul. 2020;13(5):555-82.
  • 13. Sun X, Wu Y, Yang Q, Shen S. Wind tunnel tests on the aeroelastic behaviors of tension structures. In: Proceedings of BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications, Milano, Italy, July, 20-24, 2008.
  • 14. Sun X, Wu Y, Yang Q, Shen S. Wind tunnel tests on Levy Type cable dome. In: The Seventh Asia Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan.
  • 15. Yang Q, Wu Y, Zhu W. Experimental study on interaction between membrane structures and wind environment. Earthq Eng Eng Vib. 2010;9:4.
  • 16. Rizzo F, Kopp AG, Giaccu G. Investigation of wind-induced dynamics of a cable net roof with aeroelastic wind tunnel tests. Eng Struct. 2021;229: 111569.
  • 17. Elashkar I, Novak M. Wind tunnel studies of cable roofs. J Wind Eng Ind Aerodyn. 1983;13(1-3):407-19.
  • 18. Uematsu Y, Uchiyama K. An elastic behaviour of an H.P. Shaped suspended roof. Shells, Membrane and Space Frames. In: Proceedings of IASS Symposium, Osaka, 2, pp 241-248.
  • 19. Abbas RM, Abdulhameed AA, Salahaldin AI. Finite element analyses of hypar shell footing on elastic foundation. In: Proceedings of the 2nd International Conference on Geotechnical Engoineering (ICGE'10), Hammamet, Tunisia, October 25-27, October 2010.
  • 20. Bairagi NK, Buragohain DN. Application of Finite element to hypar shell footings. In: Proceedings of the 2nd International Conference on Computer Aided Analyses and Design in Civil Engineering. III: 61-69 Roorkee.
  • 21. Rizzo F, D’Asdia P, Lazzari M, Procino L. Wind action evaluation on tension roofs of hyperbolic paraboloid shape. Eng Struct. 2011;33(2):445-61 (ISSN 0141-0296).
  • 22. CEN (Comite Europeen de Normalization), 2005. EN1991-1-4: Eurocode 1: Actions on structures-Part 1-4: General actions-Wind actions.
  • 23. Isyumov N. The aeroelastic modelling of tall buildings. In: Reinhold TA (ed) Proceedings of the international Workshop on Wind Tunnel Modelling Criteria and Technique in Civil Engineering Applications, Gaithersburg, Maryland, USA, April 1982. Cambridge University Press, Cambridge.
  • 24. He XH, Huab XG, Chenb ZQ, Huang FL. EMD-based random decrement technique for modal parameter identification of an existing railway bridge. Eng Struct. 2011;33:1348-56.
  • 25. Yang JN, Lei Y, Lin S, Huang N. Hilbert-Huang based approach for structural damage detection. J Eng Mech. 2004;130(1):85-95.
  • 26. Yi TH, Li HN, Zhang XD. A modified monkey algorithm for optimal sensor placement in structural health monitoring. Smart Mater Struct. 2012;21(10): 105033.
  • 27. Li Z, Park HS, Adeli H. New method for modal identification of super high-rise building structures using discretized synchro squeezed wavelet and Hilbert transforms: Super high-rise building structures. Struct Design Tall Spec Build. 2017;26(3):e1312.
  • 28. Singh P, Keyvanlou M, Sadhu A. An improved time-varying empirical mode decomposition for structural condition assessment using limited sensors. Eng Struct. 2021;232: 111882.
  • 29. Adhikari A. On the quantification of damping model uncertainty. J Sound Vib. 2007;306:153-71.
  • 30. Tamura Y, Yoshida A, Zhang L, Ito T, Nakata S.Examples of modal identification of structures in Japan by FDD and MRD techniques. In: Naprstek J, Fischer C (eds) Proceedings of the EACWE4-The Fourth European and African Conference on Wind Engineering. ITAM AS CR, Prague, 11-15 July, 2005.
  • 31. Brincker R, Zhang L, Andersen P. Modal identification from ambient responses using frequency domain decomposition. In: Proc. of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas, 2000.
  • 32. Pastora M, Bindaa M, Har.arika T. Modal assurance criterion. Procedia Eng. 2012;48:543-8.
  • 33. Fotsch D, Ewins DJ. Application of MAC in the frequency domain. Mechanical Engineering Department, Imperial College of Science, Technology and Medicine, London, UK.
  • 34. Aviles R. The Modal Assurance Criterion (MAC). Bilbao 2009.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-225b85b8-c306-4612-b2d8-fb2824e605fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.