
Control and Cybernetics

vol. 44 (2015) No. 1

Dynamic network functional comparison via

approximate-bisimulation∗

by

Francesco Donnarumma1, Aniello Murano2 and Roberto Prevete2

1Institute of Cognitive Sciences and Technologies,
National Research Council of Italy

Via S. Martino della Battaglia, 44 - 00185, Rome, Italy
2Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione,

Università degli Studi di Napoli Federico II
Via Claudio, 21 - 80125, Napoli, Italy
francesco.donnarumma@istc.cnr.it,

aniello.murano@unina.it,
roberto.prevete@unina.it

Abstract: It is generally unknown how to formally determine
whether different neural networks have a similar behaviour. This
question intimately relates to the problem of finding a suitable si-
milarity measure to identify bounds on the input-output response
distances of neural networks, which has several interesting theoreti-
cal and computational implications. For example, it can allow one to
speed up the learning processes by restricting the network parameter
space, or to test the robustness of a network with respect to para-
meter variation. In this paper we develop a procedure that allows
for comparing neural structures among them. In particular, we con-
sider dynamic networks composed of neural units, characterised by
non-linear differential equations, described in terms of autonomous
continuous dynamic systems. The comparison is established by im-
porting and adapting from the formal verification setting the concept
of δ−approximate bisimulations techniques for non-linear systems.
We have positively tested the proposed approach over continuous
time recurrent neural networks (CTRNNs).

Keywords: continuous time recurrent neural network, dynamic
networks, bisimulation, network equivalence

1. Introduction

1.1. An outline for the problem

In recent years, a growing number of studies in computational neuroscience
has focused on the question whether, in neural-network models having different

∗Submitted: March 2014; Accepted: February 2015

100 F. Donnarumma, A. Murano and R. Prevete

parameters, similar input-output behaviours can be realized (see, for example,
Prinz et al., 2004; Marder and Goaillard, 2006; DiMattina and Zhang, 2010).
This question naturally leads to the problem of defining a suitable similarity
measure to functionally compare distinct neural networks.

The problem of specifying a computational procedure for a similarity mea-
sure which enables one to identify bounds on the input-output response distances
of distinct neural networks has several interesting theoretical and computational
implications. In the field of computational neuroscience, for example, such a
procedure would allow one to quantitatively compare the network behaviours
resulting from widely differing combinations of intrinsic and synaptic properties
(MacGregor and Tajchman, 1988).

Interestingly, the above question is of great relevance in many engineering
applications such as pattern recognition problems. For example, in supervised
learning approaches (Bishop, 2006), different kinds of algorithms (e.g. gradient
descent and evolutionary optimization techniques) are used to find the network-
parameter values that minimize any functional error on the basis of some given
training data set. Multiple minima give rise to multiple equivalent solutions to
the same problem. Thus, the search for parameters by a supervised learning
approach can often result in an ill-posed problem, insofar as one cannot uniquely
identify a neural network from the training data only. A well-posed problem can
be obtained in some special cases (e.g., standard MLP models): under special
assumptions on the neuron output functions, the overall input-output relation-
ship of the network uniquely determines the values of all network parameters, up
to a permutation of neurons and the regrouping of identical neurons (Albertini
and Sontag, 1993; Albertini et al., 1993; Wu et al., 2006). As a consequence,
there are situations in which one may completely recover, in principle, the en-
tire structure of a neural network just from the training data (Albertini and
Sontag, 1993; Fefferman and Markel, 1994). However, the uniqueness of such
results relies on the assumption that noiseless and potentially unlimited training
data are available, thus restricting their applicability in the modelling of real
data. A similarity measure may enable one to extend this class of well-posed
problems insofar as one may determine classes of parameters which correspond
to “equivalent” or “sufficiently similar” neural networks. In this way, a func-
tional mapping between training data and parameter classes would be possible,
thereby turning the search for network parameters by a supervised approach
into a well-posed problem.

In addition to this, a similarity measure would allow one to speed up the
learning processes by restricting the parameter space during the learning phase
(Neruda, 2000). Moreover, a similarity measure might be used to test and
compare distinct neural networks (Horne and Giles, 1995) obtained by means
of different learning algorithms. Consequently, this can enable one to choose
between neural networks that look similar in terms of functionality by means of
suitable heuristics over the complexity of the network architecture and specific
requirements of the problem to solve.

The similarity question about neural-network models could be rephrased

Dynamic network functional comparison via approximate-bisimulation 101

in the formal method framework (see Clarke et al., 2000). Such a framework
provides powerful techniques to automatically and exhaustively check whether a
system satisfies a desired behaviour by checking whether a mathematical model
of the system meets a mathematical representation of the desired behaviour.
However, for complex systems, such as non-linear dynamic networks, it is an
open issue how to properly establish such a procedure (see Casagrande et al.,
2012).

1.2. Our contribution

In this paper we develop an effective procedure allowing one to compare differ-
ent given neural structures when the parameters are varied. In particular, we
consider dynamic networks composed of neural units characterised by non-linear
differential equations and describable as autonomous continuous dynamical sys-
tems (Gupta et al., 2003; Munakata, 1997). We emphasize that dynamic net-
works are widely used in computational neuroscience as models of brain regions
or subsets of biological neurons (Sporns, 2011; Chersi et al., 2013; Pezzulo et al.,
2013; MacGregor, 2012; Izhikevich, 2007).

We collect a series of results in dynamical system theory and bisimulation
theory in order to establish a dynamic network similarity (DyNeS) algorithm
enabling one to functionally compare different dynamic networks. The com-
parison of networks is established by finding upper bounds between distance of
trajectories, solutions of the equation of two neural networks. This is obtained
by importing and adapting from formal verification framework δ−approximate
bisimulations techniques for non-linear systems (Girard and Pappas, 2005) to
dynamic networks.

We stress that our approach introduces the bisimulation framework to non-
linear dynamic networks, which results in the possibility of comparing the be-
haviour of different networks by means of the estimation of a bound δ between
the systems under investigation. Without loss of generality, the present ap-
proach is tested within the continuous time recurrent neural network (CTRNN)
framework, a popular network model widely deployed both in robotics (see, e.g.,
Birch et al., 2002; De Falco et al., 2008; Paine and Tani, 2004; Montone et al.,
2011) and in the field of computational models of biological neuronal phenomena
(see, e.g., Dunn et al., 2004; Donnarumma et al., 2010, 2012). Finally, note that
the techniques used in this paper stem from the very new research developments
in dynamical system theory. This is the first attempt, to our best knowledge, to
specialize bisimulation within the framework of non-linear dynamic networks.

1.3. Related work

In the field of static neural networks there exist a number of results about simi-
larity between networks. It has been proved that the input-output functionality
uniquely determines the network structure (Albertini and Sontag, 1993; Fef-
ferman and Markel, 1994) in the case of infinite, noiseless data. Moreover, a

102 F. Donnarumma, A. Murano and R. Prevete

biologically inspired method is presented in DiMattina and Zhang (2010), which
allows for determining when the structure of a feed forward neural network can
be gradually perturbed while preserving its functionality. This is accomplished
by deriving a differential equation that specifies the conditions, under which
the parameters of some given neural network can be continuously modified,
while leaving the network functionality unchanged. Works by Amari and col-
leagues (Wei and Amari, 2008) characterised the behaviour of layered networks
near singularities with the aim of helping in avoiding regions of parameters
where standard gradient-based learning methods are stuck in large plateaus,
greatly slowing training.

In the field of dynamic networks, a lot of efforts in the literature have been
devoted to establish conditions related to stability (see, e.g., Cao et al., 2005;
Yu and Yao, 2007; Chandrasekar et al., 2014): those approaches are linked to
the method here presented, in the sense that the similarity we adopted can be
seen as a relaxation of the stability conditions. On the other hand, in the for-
mal method framework, different approximation techniques for extending formal
methods to complex dynamical systems have been proposed (see, e.g., Fränzle,
1999; Ratschan, 2010; Girard and Pappas, 2007a; Casagrande et al., 2009; Prab-
hakar et al., 2009; Lall et al., 2002). Those techniques are crucial in order to
effectively study properties related to dynamical systems by means of computa-
tional procedures. Hybrid automata with noise are presented in Fränzle (1999).
The introduction of noise in many cases ensures the (semi-)decidability of the
reachability problem. Another result of (semi-)decidability, again related to the
concept of perturbation, is given in Ratschan (2010). Our approach is based
on δ-(bi)simulation (Girard and Pappas, 2005) relations, which essentially cor-
responds to relaxations on the infinite precision, required by simulation and
bisimulation. Such relations represent a tool capable of removing complexity
and undecidability issues related to the analysis of the investigated model. Fol-
lowing this last strategy, Lyapunov-like conditions can be developed in order
to find bisimulation functions, which are used to over-approximate the observa-
tional distance between two polynomial systems, defining the so called δ−ap-
proximate bisimulations.

Unfortunately, when dealing with the standard non-linear form of output
function (e.g., the sigmoidal function), none of these techniques can be straight-
forwardly applied to dynamic networks. In this respect, however, it should
be noted that a number of simplified dynamic network models are considered
in the literature. Studies reveal that approximation of output functions to
cubic non-linearities still shows shapes, firing rates, and bursting behaviours
throughout the physiological range (see Wilson, 1999). Second order polyno-
mial approximations have also been considered in the literature (see, e.g., Rolls
et al., 2006), receiving, however, less attention as to how those models could be
related to the non-approximated ones. Linearizing the non-linear components
of the original continuous model, by replacing the sigmoidal outputs with sign
functions (Ghosh and Tomlin, 2001; De Jong et al., 2004), makes the contin-
uous signals turn into discrete off-on signals. Unfortunately, it is proved that

Dynamic network functional comparison via approximate-bisimulation 103

behaviours of those system models differ from the original one. A more sophis-
ticated approximation of sigmoidals, based on a piecewise linear function, is
exploited in the development of a hybrid automaton which simulates a single
oscillator (Casagrande et al., 2012). We take a step further by considering “poly-
nomialized” dynamic networks, for which we show the possibility of computing
useful δ−approximate bisimulations.

1.4. Work plan

The rest of the paper is organized as follows. In Section 2, we propose the mathe-
matical background of the dynamic network similarity (DyNeS) procedure. The
pseudocode is presented in Subsection 2.3. The remaining subsections are de-
voted to the explanation of the steps of the procedure and include the details on
the systems in use (Subsection 2.2), the polynomial approximation of the output
function of the networks (Subsection 2.4) and the δ− approximated bisimula-
tion (Subsection 2.5). In Section 3, examples of the applications of the method
are given, focusing on a particular model of dynamic networks, i.e. continuous
time recurrent neural networks (CTRNN). Finally, in Section 4, conclusions are
provided and future work on the approach is outlined.

2. Network similarity computation

2.1. Similarity measure

In this section, we fully describe the computational steps taken in order to obtain
the network similarity measure for dynamic networks. The pseudo-code of a
dynamic network similarity (DyNeS) procedure is presented in Subsection 2.3.
We start by clarifying the idea underlying our approach and the kind of systems
on which it is performed. To exemplify the idea of similarity measure, we
make use of the popular framework of multi-layered perceptron (MLP) network
models (see Gardner and Dorling, 1998).

Given an MLP network G, it is possible to write its input-output relation in
terms of a functional relation y = f(x, θ), where f is a parametric non-linear
function, y = (y1, . . . , yc) is the output of the neurons belonging to the output
layer, x = (x1, . . . , xd) is the input to the network, and θ = (θ1, . . . , θn) is
the parameter set, encoding the network structure (e.g. synaptic weights and
biases). Given two MLP networks G and Ḡ with different structures θ and
θ̄, a neural network similarity measure should enable one to find δ-bounds on
their responses, i.e., ∀x ∈ D ⊆ R

d
∥

∥f(x, θ)− f(x, θ̄)
∥

∥ < δ, the value of such δ
expressing a quantitative measure of how functionally close the networks G and
Ḡ are. Thus, the problem of comparing two networks can be reformulated as
finding a suitable δ that bounds so defined a distance between the two systems.

In the next section, we introduce the framework of continuous dynamic net-
works for which our approach has been developed. In contrast with MLP, con-
tinuous dynamic networks explicitly include time in the model. Moreover, we

104 F. Donnarumma, A. Murano and R. Prevete

stress that this kind of neural networks models are widely used in neuroscience
literature and engineering applications.

2.2. Dynamic networks framework

We consider the framework of continuous dynamic networks in which the evo-
lution of the system is expressed by means of first-order differential equations.
Consequently, it is possible to study them as dynamical systems:

Definition 1 An autonomous continuous dynamic system D is a 3-ple (Q, γ, T)
where

• Q is a topological space named state space
• T is the time set
• γ : (y, t) ∈ Q × T −→ Q is the flow given by the solution of the set of
first-order ordinary differential equations (ODE)

dy

dt
= f (y) . (1)

Thus, we refer to continuous dynamic networks when dealing with artificial
neural network models satisfying Definition 1. In order to compare systems
with a different number of variables, in Definition 2 the notion of a continuous
dynamic network with observables is introduced.

Definition 2 An autonomous continuous dynamical system with observables
D = (Q, γ, T, h,H) is an autonomous continuous dynamical system D = (Q, γ, T)
additionally equipped with

• an observation space H, which is a metric space H along with a metric d
• an observation map h : Q → H, which maps variables of the state space

Q to the observation space H, the variables in the space H are called
observables.

Accordingly, one can define observable trajectories given by

{(t, h(γ(y, t))) : ∃y ∈ Q, t ∈ T γ(y, t) ∈ Q}.

From Definition 2, it is clear that a continuous dynamic network with ob-
servables is a continuous dynamic network where a mapping between the state
space and an observation space is introduced. Thus, two dynamic networks
with a different number of variables can be compared if one considers the same
number of observable variables from each system and compares their observable
trajectories. In particular, in order to show our approach we focus our attention
on a popular model of dynamic networks.

Definition 3 Continuous time recurrent neural networks (CTRNNs) are net-
works of biologically inspired neurons (nodes) described by the following general
equations (Hopfield and Tank, 1986; Beer, 1995):

Dynamic network functional comparison via approximate-bisimulation 105

τ i
dyi

dt
= −yi +

n
∑

j=1

wijo(yj + θj) + Iie i ∈ {1, . . . , n} (2)

where N is the number of neurons in the network and for each neuron i: τ i is the
time constant, yi is the potential or activation variable, θi is the bias, o(yi+θi)

is the mean firing rate, with o(·) the output function, Iie =
∑n+l

j=n+1 w
ijuj is an

external input coming from l external sources uj, and wij is the weight of the
connection coming from the node j.

From Equation (2), it is clear that CTRNN systems satisfy Definition 1 when
network parameters together with the external inputs Iie are time independent.
Usually, o(x) is the sigmoidal function σ(x). However, one can choose as o(x)
any smooth, monotonic, and bounded activation function; the resulting network
being called additive CTRNN. For example, one may use the parametric form
(Tino et al., 2001)

o(x) = σa,b,c(x) =
a

1 + e−c·x
+ b (3)

that has the advantage of reducing to the hyperbolic tangent function by sub-
stituting a = 2, b = −1, c = 2 in (3) as follows

σ2,−1,2(x) =
2

1 + e−2·x
− 1 =

ex

ex
· 1− e−2·x

1 + e−2·x
=

ex − e−x

ex + e−x
= tanh(x)

or one may use the standard sigmoid with a = 1, b = 0, c = 1, formally obtained
from (3) as follows

o(x) = σ1,0,1(x) =
1

1 + e−x
= σ(x) .

The sigmoidal output function σ(x) is used throughout Section 3.
In the next subsection we will show how it is possible to find a clever ap-

proximation of the sigmoidal output function in order to apply the bisimulation
techniques shown in Subsection 2.5. However, the approach presented here is
quite general, insofar as similar results can be obtained for different activation
functions fulfilling the smoothness, monotonicity and boundedness conditions
(see Section 4).

2.3. DyNeS algorithm

It is possible to formalize in a pseudo-code fashion a similarity measure between
dynamic network behaviours: in Algorithm 1 we present the main steps of
the dynamic network similarity (DyNeS) procedure, which will be extensively

106 F. Donnarumma, A. Murano and R. Prevete

clarified in the rest of this section.

Algorithm 1 DyNeS Algorithm

Require: Given two continuous dynamic network systems D1 and D2

1: select k neurons from D1 and D2 respectively: this selection determines
the comparing subspace on which the similarity will be computed;

2: select a proper polynomial approximation for the networks output function
on the basis of the dynamic networks connection weights W ;

3: choose a suitable form of a parametric bisimulation function V c(y) : y ∈
R

k × R
k → V c(y) ∈ R

+ with y = {y11 , . . . , yk1 , y12, . . . , yk2} being the con-
catenation of the observable variables of D1 and D2 and c = {c1, . . . , cL}
a suitable number L of parameters. This bisimulation function enables one
to establish a bisimilarity between D1 and D2, i.e., in a nutshell, that the
solutions of the two systems are “sufficiently close”;

4: compute by means of bisimulation function V c(y) an upper bound δmax

of the ”distance” between the solutions of D1 and D2.

The aim of the algorithm is to produce a δmax between two dynamic net-
works, which bounds the trajectories of the two systems in time. This can
be done by specifying a clever approximation of non-linear dynamic networks
and then finding a bisimulation between the systems under investigation, which
ensures that the trajectories have the property of being “sufficiently” close.

In Subsection 2.2 we described the kind of systems for which this procedure
is applied (step 1). We will clarify the successive steps of Algorithm 1 in the
rest of this section. Then, in Subsection 2.4 we show the approximation needed
for these systems in order to find the required bisimulation (step 2); in Subsec-
tion 2.5 we describe the bisimulation framework that lets us define a superior
bound on the measure of similarity between the systems we compare (steps 3-4).

2.4. Polynomial approximation of a network output func-

tion

In the presented framework of dynamic networks, it is possible to derive the
following theorem:

Theorem 1 (Funahashi and Nakamura, 1993) Given a dynamic network D
from Definition 2, equipped with a sigmoidal output function, there exists C
such that

‖y(t)‖ ≤
√
n · C

with
• C = max{Ci},
• Ci = max{yi(0),M},
• M = n · wmax + Imax,
• wmax = max{wij}ni,j=1,

Dynamic network functional comparison via approximate-bisimulation 107

• Imax = max{Iie}ni=1.

Proof We can write the equations as

ẏi = −yi

τ i
+

F i(y,W, Iie)

τ i
.

It is possible to find a constant M such that
∣

∣F i
∣

∣ ≤ M . In fact,

∣

∣F i
∣

∣ =
∣

∣

∣

∑n
j=1 w

ijσ(yj + θj) + Iie

∣

∣

∣
≤ ∑n

j=1

∣

∣wij
∣

∣

∣

∣σ(yj + θj)
∣

∣ +
∣

∣Iie
∣

∣ <

<
∑n

j=1

∣

∣wij
∣

∣+
∣

∣Iie
∣

∣ ≤ n · wmax + Imax = M

with wmax = max{
∣

∣wij
∣

∣}ni,j=1 and Imax = max{
∣

∣Iie
∣

∣}ni=1. Consequently, we can
write:

∣

∣yi(t)
∣

∣ ≤ max{
∣

∣yi(0)
∣

∣ ,M} = Ci

from which the statement directly descends. ✷

From Theorem 1 it directly results that the argument of the sigmoidal func-
tion σ is bounded in a finite interval depending on the constants [−A,A], where
A = C + θmax, with θmax = max{

∣

∣θi
∣

∣}ni=1. Thus, it is possible to use the
following well known approximation result.

Theorem 2 [Weierstrass, 1885] For each continuous function f : x ∈ [a, b] → R

defined on the closed and bounded interval [a, b], and ∀ǫ > 0 there exists some
polynomial p(x) such that

|p(x)− f(x)| < ǫ.

Consequently, for each dynamic network, it is possible to effectively construct an
interval in which to perform a clever approximation, “as good as we want” of the
initial system (see Subsection 3.2). Of course, the better an approximation is,
the more polynomial terms are required, making the search for the bisimulation
a more computationally difficult problem (see Subsection 2.5). Therefore, a
trade-off strategy must be chosen, depending on the specific purpose for which
the procedure is applied (see Section 4 for discussions).

2.5. δ−approximate bisimulation for dynamic networks

The concept of bisimulation, as applied to state transition systems in verification
of hardware and software systems (Clarke et al., 2000), can be used to establish
topological equivalence between dynamical systems (Hale and Koçac, 1991).
Here, we show how to relax bisimulation equivalence in order to establish a
functional similarity measure between continuous dynamic networks.

In Girard and Pappas (2005) the concept of δ-approximate bisimulation be-
tween transition systems (Clarke et al., 2000) was introduced. This approximate
bisimulation, if established, identifies bounds on the distance between the tra-
jectories of two distinct transition systems. The δ-approximate bisimulations

108 F. Donnarumma, A. Murano and R. Prevete

between two transition systems can be achieved using classes of functions called
bisimulation functions. In Girard and Pappas (2005), the guidelines for iden-
tifying parametric bisimulation functions are proposed and shown to work in
some case studies. Since the autonomous continuous dynamical systems can
be considered as a subclass of the class of transition systems (Brihaye, 2006),
one can specialize the δ−approximate bisimulation method for the purpose of
finding bisimulation functions in the continuous dynamic network framework.

The classical notion of bisimulation, reported in Definition 4 (see Clarke
et al., 2000) can be formally seen as an equivalence relation, inducing a partition
of the states of the involved transition systems (Zhang, 1994).

Definition 4 A relation ∼ is a bisimulation between two transition systems
G1 ≡ (Q1,Σ,→

1
) and G2 ≡ (Q2,Σ,→

2
) such that ∀(q1, q2) ∈ Q1 ×Q2, (q1 ∼ q2)

if the following conditions are satisfied:
1. ∀a ∈ Σ, ∀q′1 ∈ Q1 | q1 a→

1
q′1 =⇒ ∃q′2 ∈ Q2 | q2 a→

2
q′2 and (q′1 ∼ q′2)

2. ∀a ∈ Σ, ∀q′2 ∈ Q2 | q2 a→
2
q′2 =⇒ ∃q′1 ∈ Q1 | q1 a→

1
q′1 and (q′1 ∼ q′2).

Bisimulation from Definition 4 guarantees that two structures have the same
behaviour. In particular, exact bisimulations between two transition systems
entail that their observations are (and remain) identical. Consequently, exact
bisimulations are very difficult to establish for non-linear dynamical systems like
dynamic networks, and like CTRNNs in particular.

The approximate bisimulation approach presented in Definition 5 (see Girard
and Pappas, 2005) is less rigid, as it requires the observations of approximately
bisimilar systems to be (and remain) arbitrarily close to each other.

Definition 5 A relation ∼δ is a δ−approximate bisimulation between two
continuous dynamic networks with observables D1 ≡ (Q1, γ1, T, h1, H) and
D2 ≡ (Q2, γ2, T, h2, H) with a common time space T and observation space
H, such that (∀(y1,y2) ∈ Q1 × Q2, (y1 ∼δ y2) if the following conditions are
satisfied:

1. d(h1(y1), h2(y2)) ≤ δ
2. ∀t ∈ T, ∀y′

1 = γ1(y1, t) ∈ Q1 =⇒ ∃y′
2 = γ2(y2, t) ∈ Q2 | (y′

1 ∼δ y
′
2)

3. ∀t ∈ T, ∀y′
2 = γ2(y2, t) ∈ Q2 =⇒ ∃y′

1 = γ1(y1, t) ∈ Q1 | (y′
1 ∼δ y

′
2).

Note If δ = 0, Definition 5 collapses into an exact bisimulation.

In other words, establishing a δ−approximate bisimulation between two con-
tinuous dynamic networks guarantees that distances of the trajectories in the
observation space are bounded by a value δ as stated by Theorem 3.

Theorem 3 (Girard and Pappas, 2007b) If there exists a δ−approximate bisim-
ulation between the two continuous dynamical networks D1 and D2, then for all
observable trajectories of D1 there exists a trajectory of D2 such that ∀t ∈ T ,
d(h1(γ1(y1, t)), h2(γ2(y2, t)) ≤ δ and vice versa.

Dynamic network functional comparison via approximate-bisimulation 109

The construction of approximate bisimulations between two transition sys-
tems, as well as the evaluation of their precision, can be performed using a
class of functions called bisimulation functions, formally defined in Definition 6,
which are positive functions defined on Q1×Q2, bounding the distance between
the observations associated with a pair (y1,y2), and non-increasing under the
dynamics of the systems.

Definition 6 A bisimulation function V is a continuous function

V : Q1 ×Q2 → R
+

with
1. V (y1,y2) ≥ d(h1(y1), h2(y2))
2. V (y1,y2) ≥ maxy′

1
=γ1(y1,t)miny

′

2
=γ2(y2,t) V (y′

1,y
′
2)

3. V (y1,y2) ≥ maxy′

2
=γ2(y2,t)miny

′

1
=γ1(y1,t) V (y′

1,y
′
2).

Note that when restricting our study to the class of autonomous systems, Condi-
tions 2 and 3 of Definition 6 become equivalent, and reduce to a Lyapunov-like
condition. In particular, this can be considered as a weakening of Lyapunov
stability conditions, in which one of the systems to compare collapses to the
fixed-point solution. Similarly, the concept of bisimulation function is reminis-
cent of robust control Lyapunov functions (see Liberzon et al., 2002), though
the latter require stronger conditions than bisimulation functions. Thanks to
Theorem 4, the discovery of a bisimulation function is a sufficient condition for
finding a bisimulation relation between two systems.

Theorem 4 (Girard and Pappas, 2007b) If V is a bisimulation function, then
∀δ ≥ 0 the set

Bδ = {(y1,y2) ∈ Q1 ×Q2, V (y1,y2) ≤ δ}

is a δ-approximate bisimulation between dynamical networks D1 and D2.

In other words, Theorem 4 suggests the possibility of comparing observable
trajectories of two continuous dynamic networks if one is able to describe a
procedure to systematically compute suitable bisimulation functions for them.

Let us consider the case of two continuous dynamic networksDi with observ-
ables, where i ∈ {1, 2}, with equations ẏi = fi(yi), where yi ∈ R

ni , and with
observation maps hi, respectively. Let us further assume the hypotheses that
D1 and D2 have the same observation space R

k, equipped with the Euclidean
distance.

Now, by letting y = [y1;y2] be an (n1 + n2) × 1 column vector, f(y) =
[

f1(y1); f2(y2)
]

an (n1+n2)×1 column vector, and h(y) = h1(y1)−h2(y2) a
p× 1 column vector, one can state the following important theorem (see Girard
and Pappas, 2005):

Theorem 5 Let p : R
n1 × R

n2 → R
+ be a differentiable function with ∇p its

gradient. If for all y ∈ R
n1+n2 we have that p(y) satisfies

110 F. Donnarumma, A. Murano and R. Prevete

p(y) ≥ h(y)Th(y) (4)

∇p(y)T f(y) ≤ 0 (5)

then V =
√

p(y) is a bisimulation function.

Thus, Theorem 5 ensures that finding a function p(y) satisfying Conditions
(4) and (5) lets us obtain a bisimulation function. Although this is a difficult
task (Parrilo, 2003), there are techniques in semidefinite programming that al-
low one to find a sum of squares form for p(y) − h(y)h(y) and −∇p(y)T f(y),
resulting in a much simpler problem∗. However, note that this approach re-
stricts the possible solutions, insofar as a sum of squares condition implies a
positive condition, but the converse is not true. We, indeed, reduce the space
of the functions, in which solutions are searched, to a subspace in which this
search is more tractable.

Accordingly, it is possible to write a simpler formulation of Theorem 5, if
one assumes that the vector fields f1(y) and f2(y) are expressed by polynomials.

Theorem 6 (Girard and Pappas, 2005) Assuming the hypotheses that the au-
tonomous vector fields f1 and f2 and the observation maps h1 and h2 are vectors
of polynomials, then the conditions

p(y)− h(y)Th(y) is a sum of squares (6)

−∇p(y)T f(y) is a sum of squares (7)

imply that V (y) =
√

p(y) is a bisimulation function, where p(y) is a multivari-
ate polynomial.

With Theorem 6, the task of finding p(y), satisfying Conditions (6) and (7), be-
comes manageable, and the bisimulation function can be computed in semidef-
inite programming†. Thus, one can rewrite the steps 3-4 of Algorithm 1 in the
light of this theorem:

3a* choose a sum of squares form pc(y)
3b* find c′ that minimizes pc(y) satisfying Theorem 6
4* find δmax = maxy

√

pc′(y).

In the next section, we apply this DyNeS procedure to CTRNN equations, and
show that this measure enables one to capture the error it is possible to tolerate
in order to consider CTRNN systems as functionally bisimilar systems.

∗It has been shown (see Parrilo, 2003) that the condition “p(x) is a sum of squares” is
computationally more tractable than p(x) ≥ 0.

†In particular, the algorithm subsumed by Theorem 6, SOSTOOLSMatlab toolbox (Prajna
et al., 2002) will be deployed.

Dynamic network functional comparison via approximate-bisimulation 111

3. CTRNN comparison by DyNeS measure

3.1. The outline

In this section, we prepare and test systems whose functional equivalence is go-
ing to be evaluated by means of the δ−approximate bisimulation. First of all, we
need a polynomial approximation of a CTRNN, due the fact that one cannot
apply the bisumulation method explained in Subsection 2.5 directly to equa-
tions of CTRNNs whose flows are not polynomials. Following Subsection 2.4,
this problem can be addressed by applying a machine learning procedure en-
abling one to approximate the CTRNN sigmoid function in a finite interval. In
this way, in Subsection 3.2 we obtain a “polynomialized” version of the CTRNN
system, which approximates the original one. Then, in Subsection 3.3 we pre-
pared systems of one neuron networks, for which it is possible to theoretically
characterize the space of the solutions when varying their parameters, in order
to illustrate δ-approximate bisimulation search. Finally, we test the scalability
procedure on two and three neuron networks.

3.2. A polynomial approximation for CTRNN flows

The possibility of comparing two continuous dynamical networks by using ap-
proximate bisimulation was illustrated in Section 2.5. However, the application
of Theorem 6 affords a comparison procedure only in the presence of polyno-
mial flows of the system. Thus, the sigmoid output function prevents one from
directly searching a bisimulation between CTRNN systems. On the other hand,
a polynomial approximation of the sigmoidal function, ”as good as we want”,
can be computed (see Subsection 2.4). More specifically, in this section we use
regularized least squares (see Bishop, 2006) in order to obtain a polynomial
approximation for the sigmoid function

σ(x) ≈
M
∑

m=0

ci · xm = PolM (x)

which, in turn, enables one to obtain a polynomialized version of the CTRNN
Equations (2):

τ i
dyi

dt
= −yi +

N
∑

j=1

wijPolM (yj − θj) + Iie i ∈ {1, . . . , N}. (8)

This procedure, given a suitable polynomial order M , allows one to approx-
imate, to any desired precision, the behaviour of the sigmoid function in some
given interval. In order to apply the regression algorithm, input-output pairs
of the sigmoid function σ(x) in a fixed interval [xmin, xmax] are prepared. The
coefficients found for a PolM are searched in an interval [−30, 30]. Fig. 1 shows

112 F. Donnarumma, A. Murano and R. Prevete

M 1 2 3 4 5 6 7 8
Ē 0.1845 0.1845 0.1160 0.1160 0.0831 0.0831 0.0630 0.0630
dev 0.0133 0.0133 0.0077 0.0077 0.0046 0.0046 0.0029 0.0029

Table 1: Mean error Ē and standard deviation dev for PolM .

h

Figure 1: Sigmoid function σ(x) versus the polynomial approximations Pol1(x),
Pol3(x) and Pol8(x)

the behaviour of this approximation for M = 1, M = 3, M = 8 compared to
the sigmoid function σ(x). Table 1 shows that the mean errors Ē corresponding
to different PolM decrease with the order of the polynomial. In the application
of the bisimilarity procedure we choose M = 8 and the corresponding Pol8(x).
The two systems are comparable as long as each neuron activation value yi of
the CTRNNs is in [xmin, xmax]. However, if the solution of the systems lets the
activations range over values outside this interval, then it is possible to regress
a new PolM (x), which approximates σ(x) within a wider range.

3.3. Methods explained for simple CTRNNs

In this section we build different examples in order to show how to compare two
CTRNNs by means of the DyNeS measure. In the first set of tests, we consider

Dynamic network functional comparison via approximate-bisimulation 113

I

w

1 Stable Fixed Point

3 Fixed Points, 2 stable and 1 unstable

Figure 2: The two branches of the cusp of Equation (9) (where θ is set to 0),
in the parameter space (w, I). Outside two cusp branches, the system has a
global stable equilibrium point. Inside the branches there are three equilibria:
an unstable one and two stable ones

simple systems made up of a single neuron:

ẏ = −y + w · σ(y + θ) + I (9)

where, for simplicity, we set the time constant τ = 1. Notice that no elementary
expression for the solution of (9) exists. By contrast, it is possible to achieve a
complete qualitative description of its dynamics (Beer, 1995). Specifically, one
can describe the limit sets of (9), including their stability and their dependence
on the parameters, as well as the bifurcations that can occur as the parame-
ters are varied (see Fig. 2). Such system has a cusp point (Hale and Koçac,
1991). This cusp point (w̃, Ĩ) is the only bifurcation point in which the system
undergoes a pitchfork bifurcation (Hale and Koçac, 1991). All other bifurcation
points are saddle-node bifurcations.

Thus, let us consider two one-neuron systems, D̃1 and D̃2:

D̃1 ≡
{

ẏ1 = −y1 + w1 · σ(y1) + I

and

D̃2 ≡
{

ẏ2 = −y1 + w2 · σ(y2) + I .

In order to apply Theorem 6, the flows of the system have to be vectors of

114 F. Donnarumma, A. Murano and R. Prevete

w2 c0 c1 c2 c3 c4 c5

−16 0.04 −0.27 0.26 −5.56 2.83 2.74
−17 0.08 −0.24 0.25 −5.23 2.69 2.55
−18 0.30 −0.90 0.91 −7.07 3.73 3.36
−19 0.50 −1.15 1.17 −7.18 3.86 3.35
−20 0.76 −1.38 1.41 −6.82 3.71 3.164

Table 2: The parameters of the bisimulation function V (y1, y2, {ci}5i=0) between
D1 and five versions of system D2 with w2 ∈ {−16,−17,−18,−19,−20}. We
consider the case, in which the initial conditions of the observable variables are
identical (y01 = y02) and are in the closed and bounded interval [−1, 1]

polynomials. Thus, we “polynomialize” the CTRNN equations as shown in the
previous section, obtaining the new systems

D1 ≡
{

ẏ1 = −y1 + w1 · PolM (y1) + I
h1 = y1

and

D2 ≡
{

ẏ2 = −y1 + w2 · PolM (y2) + I
h2 = y2

.

We choose the identity functions as the observation maps: this means that
we are going to directly compare activations y1 and y2 of the two systems. In
this case the term h(y)Th(y) in Condition 6 turns into (y1−y2)

2. This suggests
that the polynomial form of the bisimulation function must be at least of the
second order. We choose quite a general form, including terms up to the second
order:

V (y1, y2, {ci}5i=0) =
√

p(y1, y2) =
√

c0 + c1 · y1 + c2 · y2 + c3y1 · y2 + c4 · (y1)2 + c5 · (y2)2

Let us firstly consider the case, in which there is a global stable equilibrium
point in the equation, so that, for any of the initial conditions of the variables
y1 and y2, the asymptotic solution is unique. Consequently, we set I = 0 for
both D1 and D2, the weight w1 = −15 for system D1, and for D2 we choose
w2 belonging to the set {−16,−17,−18,−19,−20}, thus obtaining five different
versions of D2, one for each w2 value. We compare the D1 system so obtained
with the five different versions of system D2. Thus, minimizing the condition
of V (y1, y2, {ci}5i=0) under which the initial conditions of the observable vari-
ables are identical (y01 = y02), and in the closed interval [−1, 1], we obtain the
parameters ci of the bisimulation function for each system D2.

Table 2 shows the values of the identified parameters, while in Table 3 the
corresponding values of the similarity measure are shown. Note that, as we

Dynamic network functional comparison via approximate-bisimulation 115

w2 −16 −17 −18 −19 −20
δmax 0.20 0.32 0.58 0.75 0.92

Table 3: δmax obtained for the bisimulation function with parameter values
from Table 2. Increasing values of δmax are found, as long as system D2 behaves
“more differently” with respect to D1

w2 c0 c1 c2 c3 c4 c5

−16 0.29 −0.66 0.75 −2.85 1.37 1.49
−17 0.50 −1.14 1.28 −3.48 1.66 1.83
−18 0.38 −1.21 1.25 −4.50 2.25 2.25
−19 0.59 −1.42 1.48 −4.50 2.28 2.23
−20 0.86 −1.63 1.72 −4.48 2.29 2.21

Table 4: The parameters of the bisimulation function V (y1, y2, {ci}5i=0) between
D1 and five versions of system D2 with w2 ∈ {−16,−17,−18,−19,−20}. Here,
the case, in which the initial conditions of the observable variables are different
(y01 6= y02) and are in the closed and bounded interval [−1, 1] is considered

expected, increasing values of δmax are found, as long as system D2 behaves
“more differently” with respect to D1.

In Fig. 3 numerical simulations of the original system D̃1 versus the different
versions of system D̃2 are shown. As it was expected, the errors on trajectories
shown are completely consistent with the δmax error in Table 3. In fact, Fig.
3a shows sample trajectories of solutions of the compared systems, Fig. 3b
shows that solutions of D2 depicted with their δmax-area include solutions of
D1. Furthermore, we simulated 500 different solutions for each D2 system,
with different initial conditions fulfilling (y01 = y02). Thus, at each time we

computed an experimental δexp(t) = max
{∣

∣

∣
y1(t)− y

(i)
2 (t)

∣

∣

∣

}500

k=1
. In Fig. 3c the

ratio (δmax − δexp(t))/δmax is plotted, resulting in values greater than zero,
meaning that the δmax bound is never crossed.

A second test is made on the same D2 system, but now consisting in the
search for an initial condition of the observable variables y01 6= y02 in the same
interval [−1, 1]. In this case, the minimization is run in order to find parame-
ters that a posteriori minimize the bisimulation function V (y1, y2, {ci}5i=1) for
any possible initial conditions in [−1, 1]. The parameters for the bisimulation
function are shown in Table 4.

In Table 5, δmax values obtained for the bisimulation function with parame-
ters from Table 4 are shown. Again, increasing values of δmax are found, as long
as system D2 behaves “more differently” with respect to D1. The values of the
upper bound given by δmax are bigger than the ones in Table 3. Note that this
is again expected, insofar as we considered more general initial conditions for
y1 and y2.

116 F. Donnarumma, A. Murano and R. Prevete

(a) (b)

(c)

Figure 3: In diagram (a) some numerical simulations of system D̃1 versus
different versions of the system D̃2 are shown. D̃1 and D̃2 are one-neuron
CTRNNs. In diagram (b), each solution of D̃2 is depicted as a δmax-coloured
area with values from Table 3. As an example, the area of D̃2 with w2 = −20
includes all areas with w2 > −20. All the areas of D̃2 include the solution of
D̃1. That means that the shown distance between trajectories of D̃1 and D̃2 is
completely contained, as it was expected, in the δmax error. In diagram (c), the
ratio (δmax − δexp)/δmax is shown: again, as expected, values greater than zero
mean that the bound δmax is never overcome. See text for more details

Dynamic network functional comparison via approximate-bisimulation 117

(a) (b)

(c)

Figure 4: In diagram (a), numerical simulations of system D̃1 versus the differ-
ent versions of system D̃2 were tested. D̃1 and D̃2 are one-neuron CTRNNs. In
diagram (b), areas of δ-solutions of D̃2 are shown (see Fig. 3). Note that in this
example areas are larger in order to bound all the different initial conditions we
subsumed in the computation. In diagram (c), values (δmax − δexp)/δmax are
plotted: as a result, the errors on trajectories shown are completely contained,
as it was expected, in the δmax error from Table 5

118 F. Donnarumma, A. Murano and R. Prevete

w2 −16 −17 −18 −19 −20
δmax 2.73 3.14 3.44 3.53 3.63

Table 5: δmax obtained for the bisimulation function with parameters from Table
4. Again, increasing values of δmax are found, as long as system D2 behaves
“more differently” with respect to D1. The values of the upper bound given by
δmax are bigger than the ones in Table 3. This is again expected, insofar as we
considered more general initial conditions for y1 and y2

D1 and D2 c0 c1 c2 c3 c4 c5 δmax

I = −2.5, w1 = 6,
w2 = 7

42.30 119.89 −85.61 −131.06 93.63 46.27 22.76

I = −5, w1 = 10,
w2 = 11

200.23 −377.25 −82.88 92.49 278.14 10.25 32.26

Table 6: Parameters for the bisimulation function and the relative δmax between
systems D1 and D2. Two cases are presented: in the first we set I = −2.5, w1 =
6, w2 = 7, and in the second I = −5, w1 = 10, w2 = 11. In the two examples the
initial conditions are different, y01 6= y02 , and considered in the interval [−1, 1].
In this case δmax measures the variability of the observable trajectories (here
being higher with respect to the previous example), and increases consistently
with the greater numerical values of the distance between the stable equilibrium
points

In Fig. 4, numerical simulations of the original system D̃1 versus the dif-
ferent version of system D̃2 are shown. Coherently, even with different initial
conditions, the errors on trajectories shown are completely consistent with the
δmax error in Table 5.

Now, we consider the case of parameters (I, w) (see Fig. 2), in which there are
three equilibrium points. In this case, by considering different initial conditions
one may end up with systems that are more different with respect to the one in
the global stable equilibrium point zone that we have considered until now. We
run the search for parameters of the bisimulation function in two illustrative
cases: in the first one we set I = −2.5, w1 = 6, w2 = 7, and in the second
I = −5, w1 = 10, w2 = 11. In the two examples the initial conditions are
different, y01 6= y02 , and considered in the interval [−1, 1].

Table 6 shows the results for this bisimulation function search and the rel-
ative δmax. In this case δmax measures the variability of the observable tra-
jectories (which is higher with respect to the previous example), and increases
consistently with the greater numerical values of the distance between the stable
equilibrium points. The numerical simulations, shown in Fig. 5, are coherent
with the δmax bound found.

Finally, in the last session of tests, we explore the scalability of the proposed
approach on systems of multiple neurons. We prepared two system comparisons

Dynamic network functional comparison via approximate-bisimulation 119

(a) (b)

(c)

Figure 5: In diagrams (a) and (b), numerical simulations of system D̃1 versus
the different versions of system D̃2 in the 3−equilibria zone are shown. In
diagram (c), (δmax − δexp)/δmax is shown: the errors on trajectories shown are
completely contained, as it was expected, in the δmax error from Table 6

• a comparison between networks with two neurons each, Dtwo
1 and Dtwo

2

• a comparison between networks with three neurons each,Dthree
1 andDthree

2 .

In both cases the networks are fully connected. On the second system we
put a fixed input signal I that acts as a perturbation. For example, in the case
of systems Dtwo

1 and Dtwo
2 we consider

Dtwo
1 ≡

ẏ11 = −y11 + w11 · PolM (y11) + w12 · PolM (y21)
ẏ21 = −y21 + w12 · PolM (y11) + w22 · PolM (y21)
h1(y1) = y1

and

Dtwo
2 ≡

ẏ12 = −y12 + w11 · PolM (y12) + w12 · PolM (y22) + I
ẏ22 = −y22 + w12 · PolM (y12) + w22 · PolM (y22) + I
h2(y2) = y2

.

To run the experiments, we consider a quadratic form for the bisimulation func-

120 F. Donnarumma, A. Murano and R. Prevete

Dtwo
1 vs Dtwo

2 δ̄max σ

I = 10 14.7 1.9
I = 1 1.9 0.3
I = 0.1 0.19 0.16

Dthree
1 vs Dthree

2 δ̄max σ

I = 10 36 3
I = 1 20 9
I = 0.1 13 8

Table 7: Mean value for δmax and standard deviation computed on the set of
random weights for bisimulation between Dtwo

1 vs Dtwo
2 and Dthree

1 vs Dthree
2 .

The systems to be compared are identical except for the perturbation with a
fixed input signal I ∈ {0.1, 1, 10}

tion in all the variables, as we did previously. Furthermore, to simplify the
computations we set equal initial conditions for all the observation variables
{y1,y2} and in the interval [0, 1]. To calculate each δmax, we randomly choose
a set of weights in [0, 1] and perturb the second system with a fixed input
I ∈ {0.1, 1, 10}. We repeat this computation for 30 times and compute the
mean value for δmax and its standard deviation. From the results in Table 7
and in Fig. 6, it is possible to appreciate the coherence of the measure with
respect to the perturbation of the input signals and the increase in the number
of neurons.

4. Conclusions

4.1. The results

We have presented the dynamic network similarity (DyNeS) Algorithm, i.e.,
a procedure enabling one to compare the behaviour of neural networks, by
introducing for the first time the bisimulation method to the non-linear dynamic
network framework. To do this, we have imported theorems from dynamical
system theory and formal methods and adapted them to dynamic networks. We,
then, have selected a particular model of dynamic networks, namely continuous
time recurrent neural networks (CTRNN), and showed the applicability of our
algorithm to them. A first step in the proposed procedure is the approximation
of the dynamic network with a polynomial version with a behaviour as close as
possible to the “original” network. To do this, a machine learning procedure
is applied. Consequently, we have shown how to find the upper bounds on
the distances between the trajectories of two distinct CTRNNs by computing
approximate bisimulations on their “polynomialized” versions (Tables 3, 5, 6
and 7). Then, we have confirmed the upper bound validity by numerically
integrating the chosen CTRNNs. The results shown in Figs. 3, 4, and 5 confirm

Dynamic network functional comparison via approximate-bisimulation 121

(a)

(b)

Figure 6: In diagrams (a) and (b), the ratio (δmax − δexp)/δmax is shown for

system D̃two
1 versus system D̃two

2 and for system D̃three
1 versus system D̃three

2 ,
respectively, with different inputs I ∈ {0.1, 1, 10}. Again, as expected, values
greater than zero mean that the bound δmax is never overcome

122 F. Donnarumma, A. Murano and R. Prevete

that the distances between the trajectories are inferior or equal to the predicted
theoretical upper bounds. Notice that the DyNeS Algorithm can be performed
on a wider class of networks with respect to the one we have selected in our
experiments. For example, as a consequence of the studies presented in Haschke
(2004); Beer (2006), all results obtained in this paper for the CTRNN models
with neuron output function σ(x) can be easily transferred to any CTRNN with
neuron output function σa,b,c shown in Section 2, since for each CTRNN with
neuron output function σa,b,c it is possible to construct an equivalent CTRNN
with neuron output function σ(x).

4.2. Discussion and future works

Although these preliminary results suggest that the application of the DyNeS
Algorithm might be a viable effective approach for comparing dynamic net-
works, several issues arise, pointing at different directions, underlying the need
of achieving further progress on them. Firstly, the more the polynomial approxi-
mation is improved leading to indistinguishable behaviour between approximate
and “original” networks, the more complex the needed polynomial is, and the
computational cost raises, especially when dealing with the argument of the sig-
moidal function spreading in large intervals. However, one can also directly use
“polynomialized” versions of CTRNNs as models of neural circuits per se, just as
other dynamic neural models have been used in a “polynomialized” version (see,
e.g., Wilson, 1999).

Another research line concerns finding a subclass of dynamic networks for
which an effective ǫ error of the polynomial approximation can be combined
with the δ of the bisimulation, thus constructing a unique theoretical upper
bound for the entire procedure. Furthermore, in case the search for the bisim-
ulation fails, we cannot establish a measure of similarity, but at the same time
we cannot assert that a bisimulation does not exist, because of 1) the arbitrari-
ness of the construction of the Lyapunov-like bisimulation function, and 2) the
fact that we are trying to satisfy the sum of squares condition in Theorem 6,
which implies the positive condition of Theorem 5, while the converse is not
true. Thus, a critical aspect of the DyNeS Algorithm is related to the search
for the appropriate bisimulation function, together with the computation of the
coefficients of the polynomial. In order to simplify the search and the construc-
tion of the proper Lyapunov-like function, effective matrix measure approaches
could be imported from the field of synchronisation of chaotic neural networks
(He and Cao, 2009; Cao and Wan, 2014; Chandrasekar et al., 2014). Interest-
ingly, the network similarity problem specified in Section 2 can be expressed in a
very general way for different models of static and dynamic neural networks. In
particular, the presented DyNeS Algorithm is designed to work with CTRNNs,
but, in principle, could also be extended in order to encompass more general dy-
namic neural networks, thus establishing a similarity measure able to compare
dynamic behaviours of different type of dynamic neural networks models.

Finally, we put further emphasis on how this kind of approach paves the way

Dynamic network functional comparison via approximate-bisimulation 123

to interesting possibilities for neuroscientists: for example, the introduction of
formal logics “talking about” trajectories (see, e.g., Fainekos et al., 2007) could
enable one to ask more complex questions about dynamic network behaviours.
Thus, also for those aspects, although in all the experiments described in this
paper the similarity could be successfully accomplished by the computation of
the coefficients of the proper bisimulation function, there are several issues for
which additional theoretical and experimental investigations are needed.

Acknowledgments

The present research is funded by the Human Frontier Science Program (HFSP),
award number RGY0088/2014, by the EU’s FP7 under grant agreement no
FP7-ICT-270108 (Goal-Leaders), and by the ESF GAMES project, short visit
grant n. 3014. The GEFORCE Titan used for this research was donated by the
NVIDIA Corporation. The authors would also like to thank Patricia Bouyer,
Giuseppe Trautteur, Guglielmo Tamburrini and Giovanni Pezzulo for the in-
spiring discussions, and the anonymous reviewers for their valuable comments
and suggestions that greatly contributed to improving the final version of the
paper.

References

Albertini, F. and Sontag, E.D. (1993) For neural networks, function deter-
mines form. Neural Networks, 6 (7), 975–990.

Albertini, F., Sontag, E.D. and Maillot, V. (1993) Uniqueness of weights
for neural networks. In: Artificial Neural Networks with Applications in
Speech and Vision. Chapman and Hall, 115–125.

Beer, R.D. (1995) On the dynamics of small continuous-time recurrent neural
networks. Adaptive Behavior, 3 (4), 469–509.

Beer, R.D. (2006) Parameter space structure of continuous-time recurrent
neural networks. Neural Computation, 18 (12), 3009–3051.

Birch, M.C., Quinn, R.D., Hahm, G., Phillips, S.M., Drennan, B.T.,
Fife, A.J., Beer, R.D., Yu, X., Garverick, S.L., Laksanacharoen,
S., Pollack, A.J. and Ritzmann, R.E. (2002) Cricket-based robots. IEEE
Robotics and Automation Magazine, 9 (4), 20–30.

Bishop, C.M. (2006) Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Brihaye, T. (2006) Verification and Control of O-minimal hybrid systems and
weighted timed automata. Ph.D. thesis, Université de Mons-Hainaut.

Cao, J., Huang, D.S. and Qu, Y. (2005) Global robust stability of delayed
recurrent neural networks. Chaos, Solitons and Fractals, 23 (1), 221 – 229.

Cao, J. and Wan, Y. (2014) Matrix measure strategies for stability and syn-
chronization of inertial bam neural network with time delays. Neural Net-
works, 53, 165–172.

124 F. Donnarumma, A. Murano and R. Prevete

Casagrande, A., Dreossi, T. and Piazza, C. (2012) Hybrid automata
and ǫ-analysis on a neural oscillator. In: Proceedings of the First Interna-
tional Workshop on Hybrid Systems and Biology. Newcastle Upon Tyne, UK,
EPTCS, 58–72.

Casagrande, A., Piazza, C. and Policriti, A. (2009) Discrete semantics
for hybrid automata. Discrete Event Dynamic Systems, 19 (4), 471–493.

Chandrasekar, A., Rakkiyappan, R., Cao, J. and Lakshmanan, S.

(2014) Synchronization of memristor-based recurrent neural networks with
two delay components based on second-order reciprocally convex approach.
Neural Networks, 57, 79–93.

Chersi, F., Donnarumma, F. and Pezzulo, G. (2013) Mental imagery in
the navigation domain: a computational model of sensory-motor simulation
mechanisms. Adaptive Behavior, 21 (4), 251–262.

Clarke, E.M., Grumberg, O. and Peled, D.A. (2000) Model Checking.
The MIT Press.

De Falco, I., Della Cioppa, A., Donnarumma, F., Maisto, D., Pre-
vete, R. and Tarantino, E. (2008) CTRNN parameter learning using Dif-
ferential Evolution. In: M. Ghallab, C.D. Spyropoulos, N. Fakotakis and
N. Avouris, eds., 18th European Conference on Artificial Intelligence of Fron-
tiers in Artificial Intelligence and Applications. Frontiers in Artificial Intel-
ligence and Applications, 178. IOS Press, Amsterdam, 783–784.

De Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T. and
Geiselmann, J. (2004) Qualitative simulation of genetic regulatory networks
using piecewise-linear models. Bulletin of Mathematical Biology, 66 (2), 301–
340.

DiMattina, C. and Zhang, K. (2010) How to modify a neural network grad-
ually without changing its input-output functionality. Neural Computation,
22 (1), 1–47.

Donnarumma, F., Prevete, R. and Trautteur, G. (2010) How and over
what timescales does neural reuse actually occur? Commentary on ”neural
re-use as a fundamental organizational principle of the brain”, by Michael L.
Anderson. Behavioral and Brain Sciences, 33 (04), 272–273.

Donnarumma, F., Prevete, R. and Trautteur, G. (2012) Programming
in the brain: a neural network theoretical framework. Connection Science,
24 (2-3), 71–90.

Dunn, N.A., Lockery, S.R., Pierce-Shimomura, J.T. and Conery, J.S.

(2004) A neural network model of chemotaxis predicts functions of synaptic
connections in the nematode caenorhabditis elegans. Journal of Computa-
tional Neuroscience, 17 (2), 137–147.

Fainekos, G.E., Girard, A. and Pappas, G.J. (2007) Hierarchical synthesis
of hybrid controllers from temporal logic specifications. In: Hybrid systems:
computation and control. Springer, 203–216.

Fefferman, C. and Markel, S. (1994) Recovering a feed-forward net from
its output. In: Advances in Neural Information Processing Systems (NIPS).
Morgan Kaufmann, 335–342.

Dynamic network functional comparison via approximate-bisimulation 125

Fränzle, M. (1999) Analysis of hybrid systems: An ounce of realism can save
an infinity of states. In: Computer Science Logic. Springer, 126–139.

Funahashi, K. and Nakamura, Y. (1993) Approximation of dynamical sys-
tems by continuous time recurrent neural networks. Neural Networks, 6 (6),
801–806.

Gardner, M. and Dorling, S. (1998) Artificial neural networks (the mul-
tilayer perception) - a review of applications in the atmospheric sciences.
Atmospheric Environment, 32 (14-15), 2627–2636.

Ghosh, R. and Tomlin, C.J. (2001) Lateral inhibition through delta-notch
signaling: A piecewise affine hybrid model. In: Hybrid Systems: Computation
and Control. Springer, 232–246.

Girard, A. and Pappas, G. (2007a) Approximation metrics for discrete and
continuous systems. Automatic Control, IEEE Transactions on, 52 (5), 782–
798.

Girard, A. and Pappas, G.J. (2005) Approximate bisimulations for nonlinear
dynamical systems. In: Proceedings of the 44th IEEE Conference on Decision
and Control, and the European Control Conference 2005.. IEEE Press, 684–
689.

Girard, A. and Pappas, G.J. (2007b) Approximation metrics for discrete
and continuous systems. Automatic Control, IEEE Transactions on, 52 (5),
782–798.

Gupta, M.M., Homma, N. and Jin, L. (2003) Static and Dynamic Neural
Networks: From Fundamentals to Advanced Theory. John Wiley & Sons,
Inc., New York, NY, USA.

Hale, J.K. and Koçac, H. (1991) Dynamics and Bifurcations. Springer-
Verlag.

Haschke, R. (2004) Input space bifurcation manifolds of recurrent neural net-
works. Ph.D. thesis, Bielefeld University, Neuroinformatics Group, Faculty of
Technology, Bielefeld, Germany.

He, W. and Cao, J. (2009) Exponential synchronization of chaotic neural
networks: a matrix measure approach. Nonlinear Dynamics, 55 (1-2), 55–65.

Hopfield, J.J. and Tank, D.W. (1986) Computing with neural circuits: A
model. Science, 233, 625–633.

Horne, B.G. andGiles, C.L. (1995) An experimental comparison of recurrent
neural networks. In: G. Tesauro, D. Touretzky and T. Leen, eds., Advances
in Neural Information Processing Systems, 7. MIT Press, 697–704.

Izhikevich, E.M. (2007) Dynamical Systems in Neuroscience: the Geometry
of Excitability and Bursting. Computational Neuroscience. MIT Press, Cam-
bridge, Mass., London.

Lall, S., Marsden, J.E. and Glavascaronki, S. (2002) A subspace ap-
proach to balanced truncation for model reduction of nonlinear control sys-
tems. International Journal of Robust and Nonlinear Control, 12 (6), 519–
535.

Liberzon, D., Sontag, E.D. and Wang, Y. (2002) Universal construction of
feedback laws achieving iss and integral-iss disturbance attenuation. Systems

126 F. Donnarumma, A. Murano and R. Prevete

& Control Letters, 46 (2), 111–127.
MacGregor, R. (2012) Neural and Brain Modeling. Elsevier.
MacGregor, R.J. and Tajchman, G. (1988) Theory of dynamic similarity
in neuronal systems. Journal of Neurophysiology, 60 (2), 751–768.

Marder, E. and Goaillard, J.M. (2006) Variability, compensation and
homeostasis in neuron and network function. Nature Reviews Neuroscience,
7 (7), 563–574.

Montone, G., Donnarumma, F. and Prevete, R. (2011) A robotic scenario
for programmable fixed-weight neural networks exhibiting multiple behaviors.
In: A. Dobnikar, U. Lotric and B. Šter, eds., Adaptive and Natural Comput-
ing Algorithms, Lecture Notes in Computer Science, 6593. Springer Berlin /
Heidelberg, 250–259.

Munakata, T. (1997) Fundamentals of the New Artificial Intelligence: Beyond
Traditional Paradigms. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Neruda, R. (2000) Genetic algorithms and neural networks: Making use of
parameter space symmetries. In: Neural Networks, 2000. IJCNN 2000, Pro-
ceedings of the IEEE - INNS - ENNS International Joint Conference on, 1,
293–298.

Paine, R.W. and Tani, J. (2004) Motor primitive and sequence self-
organization in a hierarchical recurrent neural network. Neural Networks,
17 (8-9), 1291–1309. New Developments in Self-Organizing Systems.

Parrilo, P.A. (2003) Structured semidefinite programs and semialgebraic ge-
ometry methods in robustness and optimization. Ph.D. thesis, California In-
stitute of Technology, Pasadena, CA.

Pezzulo, G., Donnarumma, F. and Dindo, H. (2013) Human sensorimotor
communication: A theory of signaling in online social interactions. PLoS
ONE, 8 (11), e79876.

Prabhakar, P., Vladimerou, V., Viswanathan, M. and Dullerud, G.E.

(2009) Verifying tolerant systems using polynomial approximations. In: Pro-
ceedings of the 30th IEEE Real-Time Systems Symposium. IEEE Press, 181–
190.

Prajna, S., Papachristodoulou, A. and Parrilo, P.A. (2002) Introducing
sostools: a general purpose sum of squares programming solver. In: Decision
and Control 2002, Proceedings of the 41st IEEE Conference on, 1. IEEE
Press, 741–746.

Prinz, A.A., Bucher, D. and Marder, E. (2004) Similar network activity
from disparate circuit parameters. Nature Neuroscience, 7 (12), 1345–1352.

Ratschan, S. (2010) Safety verification of non-linear hybrid systems is quasi-
semidecidable. In: Theory and Applications of Models of Computation.
Springer, 397–408.

Rolls, E.T., Stringer, S.M. and Elliot, T. (2006) Entorhinal cortex grid
cells can map to hippocampal place cells by competitive learning. Network:
Computation in Neural Systems, 17 (4), 447–465.

Sporns, O. (2011) The human connectome: a complex network. Annals of the
New York Academy of Sciences, 1224 (1), 109–125.

Dynamic network functional comparison via approximate-bisimulation 127

Tino, P., Horne, B.G. and Giles, C.L. (2001) Attractive periodic sets in
discrete time recurrent networks (with emphasis on fixed point stability and
bifurcations in two-neuron networks). Neural Computation, 13, 1379–1414.

Wei, H. and Amari, S.i. (2008) Dynamics of learning near singularities in
radial basis function networks. Neural Networks, 21 (7), 989–1005.

Wilson, H.R. (1999) Simplified dynamics of human and mammalian neocor-
tical neurons. Journal of Theoretical Biology, 200 (4), 375–388.

Wu, M.C., David, S.V. and Gallant, J.L. (2006) Complete functional char-
acterization of sensory neurons by system identification. Annual Review of
Neuroscience, 29, 477–505.

Yu, W. and Yao, L. (2007) Global robust stability of neural networks with
time varying delays. Journal of Computational and Applied Mathematics,
206 (2), 679 – 687.

Zhang, Y. (1994) A foundation for the design and analysis of robotic systems
and behaviors. Ph.D. thesis, University of British Columbia.

