PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of heat treatment on mechanical properties of 42CrMo4 steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this study, the effect of heat treatment on the microstructure and mechanical properties of 42CrMo4 steel were investigated. Design/methodology/approach: The samples were annealed at 860°C for 120 min. followed by oil quenching and then tempered at temperatures between 480 and 570°C for 120 min. The microstructure of untreated 42CrMo4 steel mainly consists of pearlite and ferrite whereas the microstructure was found to be as a martensitic structure with a quenching process. Findings: The results showed that there is an increase in yield stress, ultimate tensile stress, hardness and impact energy, while elongation decreases at the end of the quenching process. Conversely, yield stress, ultimate tensile stress and hardness decrease slightly with the increasing of tempering temperature, while elongation and impact energy increase. Research limitations/implications: Other types of steels can be heat treated in a wider temperature range and the results can be compared. Practical implications: It is a highly effective method for improving the mechanical properties of heat treatment materials. Originality/value: A relationship between the mechanical properties and the microstructure of materials can be developed. The heat treatment is an effective method for this process.
Rocznik
Strony
5--10
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Machine and Manufacturing, Isparta University of Applied Sciences, Turkey
autor
  • Department of Machine and Manufacturing, Isparta University of Applied Sciences, Turkey
autor
  • Department of Physics, Suleyman Demirel University, 32260, Isparta, Turkey
Bibliografia
  • [1] M. Pop, D. Frunze, F. Popa, A. Neag, Aspects regarding the hot fracture behavior of 42CrMo4 alloy, Romanian Journal of Physics 62 (2017) 1-13.
  • [2] N. Arivazhagan, S. Singh, S. Prakash, G.M. Reddy, An assessment of hardness, impact strength and hot corrosion behavior of friction-welded dissimilar weldments between AISI 4140 and AISI 304, International Journal of Advanced Manufacturing Technology 39/7-8 (2008) 679-689, DOI: https://doi.org/10.1007/s00170-007-1266-7.
  • [3] E. Karadeniz, Influence of different initial microstructure on the process of spheroidization in cold forging, Materials and Design 29/1 (2008) 251-256, DOI: https://doi.org/10.1016/j.matdes.2006.11.015.
  • [4] E. Rodríguez, M. Flores, A. Pérez, R.D. Mercado-Solis, R. González, J. Rodríguez, S. Valtierra, Erosive wear by silica sand on AISI H13 and 4140 steels, Wear 267/11 (2009) 2109-2115, DOI: https://doi.org/10.1016/j.wear.2009.08.009.
  • [5] J.H. Chuang, L.W. Tsay, C. Chen, Crack growth behaviour of heat-treated 4140 steel in air and gaseous hydrogen, International Journal of Fatigue 20/7 (1998) 531-536, DOI: https://doi.org/10.1016/S0142-1123(98)00019-X.
  • [6] A.M. Abdel Wahab, E.-G. Mokhtar, A. Mazen, Effect of heat treatment on the fracture toughness of AISI 4140 Steel, Minia Journal of Engineering and Technology 33 (2014) 215-220.
  • [7] M. C. Altay, G. Durmaz, Effect of Heat treatment parameters on material properties of AISI 4140 Steel, Proceedings of the 18th Uluslararası Metalurji ve Malzeme Kongresi, IMMC 2016.
  • [8] W. Chuaiphan, L. Srijaroenpramong, D. Pinpradub, The Effects of Heat Treatment on Microstructure and Mechanical Properties of AISI 4140 for Base Cutter Cane Harvester, Advanced Materials Research 774776 (2013) 1059-1067, DOI: https://doi.org/10.4028/www.scientific.net/AMR.774-776.1059.
  • [9] C. Soriano, G. Alberdi, J. Lambarri, A. Aranzabe, A. Yáñez, Laser surface tempering of hardened chromium-molybdenum alloyed steel, Procedia CIRP 74 (2018) 353-356, DOI: https://doi.org/10.1016/j.procir.2018.08.140.
  • [10] D. Chaouch, S. Guessasma, A. Sadok, Finite Element simulation coupled to optimisation stochastic process to assess the effect of heat treatment on the mechanical properties of 42CrMo4 steel, Materials and Design 34 (2012) 679-684, DOI: https://doi.org/10.1016/j.matdes.2011.05.026.
  • [11] B. Smoljan, D. Iljkić, L. Pomenić, Mathematical modelling and computer simulation of mechanical properties of quenched and tempered steel, International Journal of Microstructure and Materials Properties 8/1-2 (2013) 97-112, DOI: https://doi.org/10.1504/IJMMP.2013.052649.
  • [12] A. Zafra, L.B. Peral, J. Belzunce, C. Rodríguez, Effect of hydrogen on the tensile properties of 42CrMo4 steel quenched and tempered at different temperatures, International Journal of Hydrogen Energy 43/18 (2018) 9068-9082, DOI: https://doi.org/10.1016/j.ijhydene.2018.03.158.
  • [13] R. Kreethi, A.K. Mondal, K. Dutta, Ratcheting fatigue behavior of 42CrMo4 steel under different heat treatment conditions, Materials Science and Engineering A 679 (2017) 66-74, DOI: https://doi.org/10.1016/j.msea.2016.10.019.
  • [14] J. Feng, T. Frankenbach, M. Wettlaufer, Strengthening 42CrMo4 steel by isothermal transformation below martensite start temperature, Materials Science and Engineering A 683 (2017) 110-115, DOI: https://doi.org/10.1016/j.msea.2016.12.013.
  • [15] J. Brnic, S. Krscanski, M. Brcic, Comparison of the mechanical behavior of materials subjected to specific operating conditions, IOP Conference Series: Materials Science and Engineering 378/1 (2018) 1-5, DOI: https://doi.org/10.1088/1757-899X/378/1/012007.
  • [16] H. Liu, P. Fu, H. Liu, C. Sun. X. Ma, D. Li, Microstructure evolution and mechanical properties in 718H pre-hardened mold steel during tempering, Materials Science and Engineering A 709 (2018) 181-192, DOI: https://doi.org/10.1016/j.msea.2017.10.047.
  • [17] H. Li, J. Hu, J. Li, G. Chen, X. Sun, Effect of tempering temperature on microstructure and mechanical properties of AISI 6150 steel, Journal of Central South University 20/4 (2013) 866-870, DOI: https://doi.org/10.1007/s11771-013-1559-y.
  • [18] M.S. Prabhavalkar, V.V. Idane, S.M. Gurav, S.G. Dhanawade, Influence of tempering temperature on mechanical properties and microstructure of EN 24 Steel, IOSR Journal of Computer Engineering, 96-101.
  • [19] L. Anand, J. Gurland, Effect of internal boundaries on the yield strengths of spheroidized steel, Metallurgical and Materials Transactions A 7/2 (1976) 191-197, DOI: https://doi.org/10.1007/BF02644456.
  • [20] X. Fang, Z. Fan, B. Ralph, P. Evans, R. Underhil, Effects of tempering temperature on tensile and hole expansion properties of a C-Mn steel, Journal of Materials Processing Technology 132/1-3 (2003) 215-218, DOI: https://doi.org/10.1016/S0924-0136 (02)00923-8.
  • [21] C. Sun, P.-X. Fu, H.-W. Liu, H.-H. Liu, N.-Y. Du, Effect of tempering temperature on the low temperature impact toughness of 42CrMo4-V Steel, Metals 8/4 (2018) 1-12, DOI: https://doi.org/10.3390/met8040232.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-224daa83-c9a6-4797-b4c2-f85e944c0985
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.