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Abstract. We consider two-dimensional elliptic pseudo-differential equation in a plane sector.
Using a special representation for an elliptic symbol and the formula for a general solution
we study the Dirichlet problem for such equation. This problem was reduced to a system of
linear integral equations and then after some transformations to a system of linear algebraic
equations. The unique solvability for the Dirichlet problem was proved in Sobolev–Slobodetskii
spaces and a priori estimate for the solution is given.
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1. INTRODUCTION

The theory of pseudo-differential equations and boundary value problems in do-
mains with a smooth boundary is well-known [4], but for non-smooth boundaries
there are a lot of problems. Using a local principle one can say that main diffi-
culty is a studying invertibility of a model equation in so-called canonical domain.
Such canonical domain is a half-space for a domain with a smooth boundary, and
a model equation is considered in a half-space. But for a simplest domain with
a non-smooth boundary the model domain is a cone. The author supposes to consider
a cone like a canonical domain serving the theory of pseudo-differential equations
on manifolds with non-smooth boundary [15]. Such approach is based on a special
representation for an elliptic symbol. Existence of such special wave factorization for
symbols of elliptic pseudo differential equations has permitted to obtain full solvabil-
ity picture for model pseudo differential equations in two-dimensional case [15, 16].
Recently the author has found that there is another way to develop the theory [19–21].
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The paper is devoted to verifying these construction for two-dimensional case [14] and
may be the consideration in more details will allow to transfer the main results on
spaces of an arbitrary dimension.

Some papers are related to this studying [1, 12] (for the Laplace equation) and [3]
(for a general differential equations), there are very similar methods (the Mellin
transform) and formulas.

There are other approaches for studying the problem. I wrote many times on these
versions to studying a solvability for pseudo-differential equations in domains with
conical points and wedges, but now I would like to speak on main difference of my papers
from other authors (see, for example, [2,7–11] and many others). Some authors consider
pseudo-differential operators on compact manifolds without a boundary on which exist
certain singularities, and they need a special local definition of a pseudo-differential
operator in a neighborhood of the singular point, this is another problem different from
my one. Other authors consider given boundary value problems on manifolds with
a singular boundary, and they consider a conical point as a direct product B× (0,+∞),
where B is a base of a cone with a smooth boundary, further they use the Mellin
transform and obtain a certain operator pencil. The author’s approach is based on two
other principles, namely the local principle and existence of the special factorization
for an elliptic symbol of pseudo-differential operator at a singular point, this approach
in general is described in papers [18,22].

2. PRELIMINARIES

A pseudo differential operator A with symbol A(ξ), ξ ∈ Rm, is defined by the formula

(Au)(x) =
∫

Rm

A(ξ)ũ(ξ)eixξdξ, (2.1)

where ũ denotes the Fourier transform.
This is a model operator. Generally speaking one considers pseudo differential

operators depending on the space variable x. An operator with symbol A(x, ξ) is
defined like (2.1) with the help of the formula

u(x) 7−→
∫

Rm

A(x, ξ)ũ(ξ)eixξdξ

by “freezing” the space variable x.
Here we will consider the class of symbols independent of the space variable x and

satisfying the following condition: there are two positive constants c1, c2, such that

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2, ∀ξ ∈ Rm. (2.2)

The number α ∈ R we call the order of pseudo-differential operator A.
We will denote Pα the symbol class satisfying the condition (2.2).
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Let us define the Sobolev–Slobodetskii functional space Hs(Rm) as the Hilbert
space of distributions [1] with the norm

‖u‖2s =
∫

Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ.

It is well-known that an operator from Pα is a linear bounded operator acting from
Hs(Rm) into Hs−α(Rm) [1]. Everywhere below we will use symbol H̃s(M) to denote
the Fourier image of the space Hs(M).

Now we will study a solvability of pseudo differential equations

(Au)(x) = f(x), x ∈ Ca+, (2.3)

in the space Hs(Ca+), where Ca+ is m-dimensional cone

Ca+ = {x ∈ Rm : x = (x1, . . . , xm−1, xm), xm > a|x′|, a > 0},
x′ = (x1, . . . , xm−1).

By definition, the space Hs(Ca+) consists of distributions from Hs(Rm), which
support belongs to Ca+. The norm in the space Hs(Ca+) is induced by the norm from
Hs(Rm). The right-hand side f is chosen from the space Hs−α

0 (Ca+); by definition the
space Hs

0(Ca+) is a space of distributions on Ca+, admitting a continuation to Hs(Rm).
The norm in the space Hs

0(Ca+) is defined

‖f‖+s = inf ‖lf‖s,

where the infimum is taken over all continuations lf on the whole Rm.
The symbol

∗
Ca+ denotes a conjugate cone for Ca+:

∗
Ca+= {x ∈ Rm : x = (x′, xm), axm > |x′|},

Ca− ≡ −Ca+, T (Ca+) denotes the radial tube domain over the cone Ca+, i.e. the domain
in a complex space Cm of type Rm + iCa+.

Further, let us define a special multi-dimensional singular integral by the formula

(Gmu)(x) = lim
τ→0+

∫

Rm

u(y′, ym)dy′dym
(|x′ − y′|2 − a2(xm − ym + iτ)2)m/2

.

To describe the solvability picture for the equation (2.3) we will introduce
the following definition.
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Definition 2.1. By wave factorization for the symbol A(ξ), satisfying the condition
(2.2), we mean its representation in the form

A(ξ) = A 6=(ξ)A=(ξ),

where the factors A 6=(ξ), A=(ξ) satisfy the following conditions:

1) A 6=(ξ), A=(ξ) are defined for all admissible values ξ ∈ Rm, without may be,
the points {ξ ∈ Rm : |ξ′|2 = a2ξ2

m};
2) A 6=(ξ), A=(ξ) admit an analytical continuation into radial tube domains

T (
∗
Ca+), T (

∗
Ca−), respectively, with estimates

|A±1
6= (ξ + iτ)| ≤ c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1 + |ξ|+ |τ |)±(α−æ), ∀τ ∈

∗
Ca+ .

The number æ ∈ R is called index of wave factorization.

Everywhere below we will suppose that the wave factorization mentioned exists.

3. STUDYING TRANSMUTATION OPERATORS

Let us denote Ta the transformation Rm −→ Rm of the following type




t1 = x1,

. . . . . . . . . . . .

tm−1 = xm−1,

tm = xm − a|x′|.

(obviously, it one-to-one transforms ∂Ca+ into hyperplane xm = 0).
Explicit calculations give simple answer:

FTau = Vaũ,

where F is the Fourier transform

ũ(ξ) =
∫

Rm

eix·ξdx,

and Va is a special operator (roughly speaking it is a pseudo-differential operator with
symbol e−ia|ξ′|ξm), and further one can construct the general solution for our pseudo
differential equation (2.3).
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Indeed, it follows from the relations

(FTau)(ξ) =
∫

Rm

eix·ξu(x1, . . . , xm−1, xm − a|x′|)dx

=
∫

Rm

eiy
′ξ′ei(ym+a|y′|)ξmu(y1, . . . , ym−1, ym)dy

=
∫

Rm−1

eia|y
′|ξmeiy

′ξ′ û(y1, . . . , ym−1, ξm)dy′,

where û denotes the Fourier transform on the last variable, and the Jacobian of Ta
is equal to 1 everywhere without origin and bounded. According to the properties of
Fourier transform the product of two functions becomes their convolution. Roughly
speaking the operator Va is a convolution for m− 1 variables, and a multiplier for the
last variable.

Moreover, the following relations are valid [19].
Lemma 3.1. Operators Ta and Va have the following properties:
1. Va = FTaF

−1,
2. T−1

a = T−a,
3. V −1

a = V−a.

3.1. 2-DIMENSIONAL CASE

Let us consider the case m = 2 in details. So we have

(FTau)(ξ) =
+∞∫

−∞

eia|y1|ξ2eiy1ξ1 û(y1, ξ2)dy1

=
+∞∫

−∞

χ+(y1)eiay1ξ2eiy1ξ1 û(y1, ξ2)dy1 +
+∞∫

−∞

χ−(y1)e−iay1ξ2eiy1ξ1 û(y1, ξ2)dy1

=
+∞∫

−∞

χ+(y1)eiy1(aξ2+ξ1)û(y1, ξ2)dy1 +
+∞∫

−∞

χ−(y1)eiy1(−aξ2+ξ1)û(y1, ξ2)dy1.

The last two summands are the Fourier transforms of functions

χ+(y1)eiy1(aξ2+ξ1)û(y1, ξ2), χ−(y1)eiy1(−aξ2+ξ1)û(y1, ξ2)

on the first variable y1 respectively, so we can use the following properties [4] (these
are Sokhotskii formulas [5, 6] and we write them for a one variable)

+∞∫

−∞

χ+(x)eixξu(x)dx = 1
2 ũ(ξ) + v.p.

i

2π

+∞∫

−∞

ũ(η)dη
ξ − η ,
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+∞∫

−∞

χ−(x)eixξu(x)dx = 1
2 ũ(ξ)− v.p. i2π

+∞∫

−∞

ũ(η)dη
ξ − η .

Taking into account these properties we have

(FTau)(ξ) = ũ(aξ2 + ξ1, ξ2) + ũ(−aξ2 + ξ1, ξ2)
2

+ v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη
aξ2 + ξ1 − η

− v.p. i2π

+∞∫

−∞

ũ(η, ξ2)dη
−aξ2 + ξ1 − η

≡ (Vaũ)(ξ).

4. A GENERAL SOLUTION

Here we will consider the equation (2.3) for the case æ− s = n+ δ, n ∈ N, |δ| < 1/2,
only. The following result is valid [19].
Theorem 4.1. General solution of the equation (2.3) in Fourier image is given by
the formula

ũ(ξ) = A−1
6= (ξ)Qn(ξ)GmQ−1

n (ξ)A−1
= (ξ)l̃f(ξ)

+A−1
6= (ξ)V−aF

(
n−1∑

k=0
ck(x′)δ(k)(xm)

)
,

where ck(x′) ∈ Hsk (Rm−1) are arbitrary functions, sk = s − æ + k + 1/2,
k = 0, 1, 2, . . . , n− 1, lf is an arbitrary continuation of f on Hs−α(Rm), δ is the
Dirac mass-function, Qn(ξ) is an arbitrary polynomial satisfying the condition (2.2)
for α = n.

Using this representation one can suggest different statements of boundary value
problems for the equation (2.3).

5. BOUNDARY VALUE PROBLEMS

Let us consider very simple case, when f ≡ 0, a = 1, n = 1. Then the formula above
takes the form

ũ(ξ) = A−1
6= (ξ)V−1c̃0(ξ1).

The main problem for this situation is the following: What kind of conditions do
we need for ũ(ξ) to determine uniquely c̃0(ξ1)? According to above calculations we
have

ũ(ξ) = c̃0(ξ2 + ξ1) + c̃0(−ξ2 + ξ1)
2A 6=(ξ1, ξ2)

+A−1
6= (ξ1, ξ2)


v.p. i2π

+∞∫

−∞

c̃0(η)dη
ξ2 + ξ1 − η

− v.p. i2π

+∞∫

−∞

c̃0(η)dη
−ξ2 + ξ1 − η


 .



Pseudo-differential equations and conical potentials: 2-dimensional case 115

Let us make the change of variables
{
t1 = ξ2 + ξ1,

t2 = −ξ2 + ξ1,

and denote
a6=(t1, t2) ≡ A 6=

(
t1 + t2

2 ,
t1 − t2

2

)
.

Then we can rewrite

Ũ(t1, t2) = c̃0(t1) + c̃0(t2)
2a6=(t1, t2)

+ a−1
6= (t1, t2)


v.p. i2π

+∞∫

−∞

c̃0(η)dη
t1 − η

− v.p. i2π

+∞∫

−∞

c̃0(η)dη
t2 − η


 .

Let us introduce

v.p.
i

π

+∞∫

−∞

c̃0(η)dη
t1 − η

≡ d̃0(t1), v.p.
i

π

+∞∫

−∞

c̃0(η)dη
t2 − η

≡ d̃0(t2).

Then we have

Ũ(t1, t2) = c̃0(t1) + c̃0(t2) + d̃0(t1)− d̃0(t2)
2a6=(t1, t2) ≡ c̃(t1) + d̃(t2)

2a6=(t1, t2) ,

where we put c̃(t1) ≡ c̃0(t1) + d̃0(t1), d̃(t2) ≡ c̃0(t2)− d̃0(t2).
Assuming that we know the following two integrals

+∞∫

−∞

Ũ(t1, t2)dt1 = g̃1(t2),
+∞∫

−∞

Ũ(t1, t2)dt2 = g̃2(t1)

and integrating the last quality first on t1 and then on t2 we can obtain the following
2× 2-system of linear integral equations with respect to two unknown functions c̃, d̃:





+∞∫

−∞

K(t1, t2)c̃(t1)dt1 + b1(t2)d̃(t2) = g̃1(t2),

b2(t1)c̃(t1) +
+∞∫

−∞

K(t1, t2)d̃(t2)dt2 = g̃2(t1),

(5.1)

where we use the following notations

K(t1, t2) = (2a6=(t1, t2))−1, b1(t2) =
+∞∫

−∞

K(t1, t2)dt1, b2(t1) =
+∞∫

−∞

K(t1, t2)dt2.
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5.1. THE DIRICHLET PROBLEM

We consider here the following problem in the 2-dimensional sector

C1
+ = {x ∈ R2 : x = (x1, x2), x2 > |x1|}.

Definition 5.1. Let
◦
Eα be a class of symbols which are homogeneous of order α and

satisfy the condition
c1|ξ|α ≤ |A(ξ)| ≤ c2|ξ|α.

Let A be a pseudo-differential operator with the symbol A(ξ1, ξ2) ∈
◦
Eα and set the

following problem: find the function u ∈ Hs(C1
+) such that

(Au)(x) = 0, x ∈ C1
+, (5.2)

u|x1+x2=0 = v1, u|−x1+x2=0 = v2, (5.3)

where v1, v2 are given functions on angle sides from Hs−1/2(R+).

Theorem 5.2. Let æ − s = 1 + δ, |δ| < 1/2. Then the problem (5.2), (5.3) has
a unique solution u ∈ Hs(C1

+) iff the system (5.1) of linear integral equations is
uniquely solvable.

5.2. THE HOMOGENEOUS WAVE FACTORIZATION

For this case we need a special type of the wave factorization, i.e. the so-called
homogeneous wave factorization [15]. Let us note that this case is more pleasant for
consideration because we can reduce the system (5.1) to a system of linear algebraic
equations by the Mellin transform [15].

Definition 5.3. We say that A(ξ) ∈
◦
Eα admits a homogeneous wave factorization

with respect to the cone Ca+ if it can be represented in the form

A(ξ) = A 6=(ξ) ·A=(ξ),

where the factors A 6=(ξ), A=(ξ) satisfy the following conditions:

(1) A 6=(ξ), A=(ξ) are defined for all admissible values ξ ∈ Rm, without may be,
the points {ξ ∈ Rm : |ξ′|2 = a2ξ2

m};
(2) A 6=(ξ), A=(ξ) admit an analytical continuation into radial tube domains

T (
∗
Ca+), T (

∗
Ca−) and are homogeneous of order æ and α− æ, respectively.

The number æ ∈ R is called index of homogeneous wave factorization.

Using Definition 5.3 we will try to simplify our conclusions and to obtain more
convenient solvability conditions.

Everywhere below we assume that the factor A 6=(ξ1, ξ2) is homogeneous function
of order æ.
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Lemma 5.4. The functions b1(t2), b2(t1) are homogeneous of order −æ + 1.

Indeed, let us verify b1(t2). Let λ ∈ R be a positive number, then we have

b1(λt2) =
+∞∫

−∞

K(t1, λt2)dt1,

and after the change t1 = λt we obtain

b1(λt2) =
+∞∫

−∞

K(λt, λt2)λdt =
+∞∫

−∞

λ−æK(t, t2)λdt

= λ−æ+1
+∞∫

−∞

K(t, t2)dt = λ−æ+1b1(t2);

thus suppose additionally that for all t1 6= 0, t2 6= 0

b1(t2) 6= 0, b2(t1) 6= 0. (5.4)

Further, we rewrite the system (5.1) in the following form
{∫ +∞
−∞ M(t1, t2)c̃(t1)dt1 + d̃(t2) = f̃1(t2),
c̃(t1) +

∫ +∞
−∞ N(t1, t2)d̃(t2)dt2 = f̃2(t1),

(5.5)

where

b−1
1 (t2)K(t1, t2) = M(t1, t2),
b−1
2 (t1)K(t1, t2) = N(t1, t2), b−1

1 (t2)g̃1(t2) = f̃1(t2), b−1
2 (t1)g̃2(t1) = f̃2(t1).

Lemma 5.5. The kernels M(t1, t2), N(t1, t2) of the system (5.5) are homogeneous
of order −1.

It implies that the Mellin transform [13] can be very useful in this situation, and we
use the technique developed in [17]. For completeness we give here these calculations.
We rewrite the system (5.5)

{∫ 0
−∞M(t1, t2)c̃(t1)dt1 +

∫ +∞
0 M(t1, t2)c̃(t1)dt1 + d̃(t2) = f̃1(t2),

c̃(t1) +
∫ 0
−∞N(t1, t2)d̃(t2)dt2 +

∫ +∞
0 N(t1, t2)d̃(t2)dt2 = f̃2(t1),

then once again with change of variables
{∫ +∞

0 M(−t1, t2)c̃(−t1)dt1 +
∫ +∞

0 M(t1, t2)c̃(t1)dt1 + d̃(t2) = f̃1(t2),
c̃(t1) +

∫ +∞
0 N(t1,−t2)d̃(−t2)dt2 +

∫ +∞
0 N(t1, t2)d̃(t2)dt2 = f̃2(t1).
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Now we introduce new unknowns c̃0(t), c̃1(t), d̃0(t), d̃1(t) defined on R+ instead of
unknowns c(t), d(t) defined on R. We put

c̃0(t) = c̃(t), c̃1(t) = c̃(−t), t > 0, d̃0(t) = d̃(t), d̃1(t) = d̃(−t), t > 0,

the same for right-hand sides

f̃10(t) = f̃1(t), f̃11(t) = f̃1(−t), t > 0, f̃20(t) = f̃2(t), f̃21(t) = f̃2(−t), t > 0,

for the kernel M(t1, t2)

M11(t1, t2) = M(t1, t2), M12(t1, t2) = M(−t1, t2), M21(t1, t2) = M(t1,−t2),

M22(t1, t2) = M(−t1,−t2), t1, t2 > 0,
and analogously for N(t1, t2).

Hence, we can obtain 4× 4-system of linear integral equations on a half-axis with
respect to 4 unknowns c0, c1, d0, d1





+∞∫

0

M11(t1, t2)c̃0(t1)dt1 +
+∞∫

0

M12(t1, t2)c̃1(t1)dt1 + d̃0(t2) = f̃10(t2),

+∞∫

0

M21(t1, t2)c̃0(t1)dt1 +
+∞∫

0

M22(t1, t2)c̃1(t1)dt1 + d̃1(t2) = f̃11(t2),

c̃0(t1) +
+∞∫

0

N11(t1, t2)d̃0(t2)dt2 +
+∞∫

0

N21(t1, t2)d̃1(t2)dt2 = f̃20(t1),

c̃1(t1) +
+∞∫

0

N12(t1, t2)d̃0(t2)dt2 +
+∞∫

0

N22(t1, t2)d̃1(t2)dt2 = f̃22(t1).

(5.6)

Applying the Mellin transform to the system (5.6) we obtain the following system
of linear algebraic equations:





M̂11(λ)ĉ0(λ) + M̂12(λ)ĉ1(λ) + d̂0(λ) = f̂10(λ),
M̂21(λ)ĉ0(λ) + M̂22(λ)ĉ1(λ) + d̂1(λ) = f̂11(λ),
ĉ0(λ) + N̂11(λ)d̂0(λ) + N̂21(λ)d̂1(λ) = f̂20(λ),
ĉ1(λ) + N̂12(λ)d̂0(λ) + N̂22(λ)d̂1(λ) = f̂21(λ),

(5.7)

with the matrix

P4(λ) =




M̂11(λ) M̂12(λ) 1 0
M̂12(λ) M̂221(λ) 0 1

1 0 N̂11(λ) N̂21(λ)
0 1 N̂12(λ) N̂22(λ)


 ,

where we used the notations: M̂ij(λ) denotes Mellin transform for the function M(1, t),
and N̂ij(λ) denotes Mellin transform for the function N(t, 1), i, j = 1, 2.



Pseudo-differential equations and conical potentials: 2-dimensional case 119

5.3. WEIGHTED Hs-SPACES AND SOLVABILITY

In case when detP4(λ) 6=0 (<eλ = 1/2) the system (5.6) has a unique solution, and we
can define c(x), d(x) knowing this solution. Substituting them in general solution
we will define Ũ(x), but this solution generally speaking will not belong to class
Hs(Ca+) because in case æ > 0 the pseudo-differential operator a−1

6= is not bounded in
space scale Hs, i.e., the symbol has singularity of order æ at origin. In connection with
this fact we will introduce weighted Hs-spaces which “annihilate” such singularity and
give the possibility to obtain a priori estimate of the solution there.

Let us denote by Hs,æ(Rm) the space of distributions u(x) for which their Fourier
transforms are locally integrable in the Lebesgue sense function ũ(ξ) such that

‖u‖2s,æ =
∫

Rm

|ũ(ξ)|2|ξ|2æ(1 + |ξ|)2(s−æ)dξ < +∞.

It is natural to call Hs,æ(Rm) weighted Hs-spaces with weight
( |ξ|

1 + |ξ|

)æ
.

In space scale Hs,æ(Rm), pseudo-differential operators with homogeneous symbols
have series of properties needed. We will collect below some of them. We denote S(Rm)
the Schwartz class of infinitely differentiable rapidly decreasing at infinity functions.
Theorem 5.6. Let A be a pseudo-differential operator with symbol which is belonging
to C∞(Rm \ {0}) and homogeneous of order æ. Then

‖Au‖s−æ ≤ cs,æ‖u‖s,æ, ∀u ∈ S(Rm).

Proof. We have
‖Au‖2s−æ =

∫

Rm

|A(ξ)u(ξ)|2(1 + |ξ|)2(s−æ)dξ,

and since A(ξ) is homogeneous of order æ and A(ξ) ∈ C∞(Rm \ {0}), then

c1 ≤
∣∣A(ξ)|ξ|−æ∣∣ ≤ c2.

Hence,

‖Au‖2s−æ ≤ cs,æ
∫

Rm

|ũ(ξ)|2|ξ|2æ(1 + |ξ|)2(s−æ)dξ = cs,æ‖u‖2s,æ.

If we will denote by [v]s,æ the norm in space Hs,æ(Rm−1)

[v]2s,æ =
∫

Rm

|ṽ(ξ′)|2|ξ′|2æ(1 + |ξ′|)2(s−æ)dξ′, ξ′ = (ξ1, . . . , ξm−1),

then a proof of the following lemma is the same as in [4].
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Lemma 5.7. Let s > 1/2. Then any function u(x′, xm) ∈ Hs,æ(Rm) is continuous
on xm ∈ R with its values in Hs−1/2,æ(Rm−1). The estimate holds:

max
xm∈R

[u(x′, xm)]s−1/2,æ ≤ c‖u‖s,æ, ∀u ∈ Hs,æ(Rm).

Lemma 5.8. Let c(x1) ∈ Hs−α+1/2(R+), A is a pseudo-differential operator with
symbol A 6=(ξ) ∈ C∞

(
R2 \ {0}

)
which is homogeneous of order α. Then

‖c(x1)a−1
6= (x)‖2s,α ≤ c′[c]s−α+1/2 (−1 < s− α+ 1/2 < 0).

Proof. We have

‖c(x1)a−1
6= (x)‖2s,α =

∫

R2

|c̃(x1)|2
|a6=(x)|2 |x|

2α(1 + |x|)2(s−α)dx

≤
∫

R2

|c̃(x1)|2(1 + |x|)2(s−α)dx1dx2

≤ c′
+∞∫

−∞

|c̃(x1)|2(1 + |x1|)2(s−α+1)dx1

+∞∫

−∞

(1 + |x|)−2dx2

= c′
+∞∫

−∞

|c̃(x1)|2(1 + |x1|)2(s−α+1/2)dx1 = c′[c]s−α+1/2.

Lemma 5.9. Let b(x) ∈ C∞ (R \ {0}) , b(x) be homogeneous of order 1 − æ, and
represent symbol of pseudo-differential operator b. Then

‖b−1v‖s−æ+1/2 ≤ c‖v‖s−1/2,æ−1, ∀v ∈ Hs−1/2,æ−1(R).

Proof.

‖b−1v‖2s−æ+1/2 =
+∞∫

−∞

|b−1(x)|2|ṽ(x)|2(1 + |x|)2(s−æ+1/2)dx

≤ c
+∞∫

−∞

|x|−2(1−æ)|ṽ(x)|2(1 + |x|)2(s−æ+1/2)dx

= c

+∞∫

−∞

( |x|
1 + |x|

)2(æ−1)
|ṽ(x)|(1 + |x|)2(s−1/2)dx

= c‖v‖s−1/2,æ−1.

Remark 5.10. Since s−æ + 1/2 = s− 1/2− (æ− 1) we can reformulate Lemma 5.9
by the following way: if b(x) ∈ C∞(R \ {0}) and b(x) is homogeneous of order α then

‖bv‖s−α ≤ c‖v‖s,α,
and it follows from Theorem 5.6.
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Let us note also that
‖u‖s,æ ≤ c‖u‖s,æ−1. (5.8)

In fact,

‖u‖2s,æ =
∫

Rm

|ũ(ξ)|2
( |ξ|

1 + |ξ|

)2æ
(1 + |ξ|)2sdξ

≤ c
∫

Rm

|ũ(ξ)|2
( |ξ|

1 + |ξ|

)2(æ−1)
(1 + |ξ|)2sdξ = c‖u‖s,æ−1,

because
(
|ξ|

1+|ξ|

)−1
≥ 1.

Now we are ready to formulate the result on solvability of the Dirichlet problem.

Theorem 5.11. Let v1, v2 ∈ Hs−1/2,æ−1(R+), A be an elliptic pseudo-differential
operator with symbol A(ξ) ∈ C∞(R2 \ {0}) which is homogeneous of order α, æ be
an index of homogeneous wave factorization for A(ξ) with respect to C1

+. Let the
conditions (5.4) be fulfilled, and

inf |detP4(λ)| 6= 0, <eλ = 1/2.

Then there exists a unique solution of the Dirichlet problem (5.2), (5.3) in space
Hs,æ(C1

+), æ− s = 1 + δ, |δ| < 1/2. The following a priori estimate holds

‖u‖s,æ ≤ c
(

[v1]s−1/2,æ−1 + [v2]s−1/2,æ−1

)
.

Proof. Using previous considerations we need to prove the a priori estimate only.
By Lemma 5.8 we obtain

‖u‖s,æ = ‖U‖s,æ = ‖Ũ‖s,æ ≤ c1
(

[c]s−æ+1/2 + [d]s−æ+1/2

)
,

and it is left to estimate [c]s−æ+1/2, [d]s−æ+1/2 by norms of functions v1, v2.
Before let’s note the following. First, s− æ + 1/2 = −1− δ + 1/2 = −1/2− δ, and

hence, −1 < s− æ + 1/2 < 0, and it gives

[c]s−æ+1/2 ≤ [c]0 (analogously for d). (5.9)

Second, if u ∈ Hs,æ(C1
+) then v1, v2 as traces of this function belong to space

Hs−1/2,æ(R+) in Lemma 5.7, but according to statement of the theorem they are taken
from class Hs−1/2,æ−1(R+). This “contradiction” is eliminated by inequality (5.8).

After corresponding transformations we obtain the system (5.7). We have denoted
the matrix of this system by P̂4(λ), and its inverse matrix will be denoted by P̂−1

4 (λ),
if det P̂4(λ) 6=0, <eλ = 1/2. Vector with components ĉ0(λ), ĉ1(λ), d̂0(λ), d̂1(λ) we
will denote Ĉ(λ), and vector with components f̂10(λ), f̂11(λ), f̂20(λ), f̂21(λ) we will
denote F̂ (λ).
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Then
Ĉ(λ) = P̂−1

4 (λ)F̂ (λ),

and since components of matrix P̂−1
4 (λ) are bounded (by virtue of Mellin transform

properties [13]), then
‖Ĉ(λ)‖0 ≤ c′‖F̂ (λ)‖0,

where

‖Ĉ(λ)‖20 = 1
2πi

1/2+i∞∫

1/2−i∞

|Ĉ(λ)|2dλ.

Now by virtue of Parseval’s equality

+∞∫

0

|C(x)|2dx = 1
2πi

1/2+i∞∫

1/2−i∞

|Ĉ(λ)|2dλ

we obtain
+∞∫

0

|C(x)|2dx ≤ c′
+∞∫

0

|F (x)|2dx,

or returning to c(x), d(x),

[c]0 ≤ c1
([
b−1
1 v1

]
0 +

[
b−1
2 v2

]
0
)
,

[d]0 ≤ c2
([
b−1
1 v1

]
0 +

[
b−1
2 v2

]
0
)
.

By Lemma 5.9, we have
[
b−1
1 v1

]
0 ≤ c1 [v1]s−1/2,æ−1 ,

[
b−1
2 v2

]
0 ≤ c2 [v2]s−1/2,æ−1 ,

whence taking into account the inequality (5.9), we obtain

[c]s−æ+1/2 ≤ c1
(

[v1]s−1/2,æ−1 + [v2]s−1/2,æ−1

)
,

[d]s−æ+1/2 ≤ c2
(

[v1]s−1/2,æ−1 + [v2]s−1/2,æ−1

)
,

and then
‖u+‖s,æ ≤ c′

(
[v1]s−1/2,æ−1 + [v2]s−1/2,æ−1

)
.

Let us note that earlier for two-dimensional case the author obtained certain
integral equations for determining unknown functions, and study these equations by
Mellin transform reducing them to a system of linear difference equations [17].
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6. CONCLUSION

We have shown in the paper that method of transmutation operators leads to the same
results which were obtained by the author earlier, but these methods can be useful for
multidimensional case also. We will develop these multidimensional considerations in
forthcoming papers.
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