Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Unmanned vehicles are often used in everyday life, mostly by rescue teams or scientists exploring new terrains. In those constructions, the suspension has constant dimensions, which leads to many disadvantages and limits the application area. The solution to these problems can be creating a six-wheeled mobile platform that can dynamically change the wheelbase in relation to the area of action or terrain inclination angle. The active change in location of the center of gravity gives a possibility to access sloppy obstacles not available with classical suspensions. The main scope of this study is to investigate the influence of material properties on vibration frequency at different lengths of suspension members. The obtained results will allow finding the optimum material for producing a prototype unit.
Rocznik
Tom
Strony
art. no. e138239
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Institute of Mechanic and Machine Design Foundations, Czestochowa University of Technology, Czestochowa, Poland
autor
- Institute of Mechanic and Machine Design Foundations, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
- [1] S. García, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, ”High-level mission specification for multiple robots”, in Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering, 2019, pp. 127–140, doi: 10.1145/3357766.3359535.
- [2] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, “Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots”, in Lecture Notes in Computer Science, vol. 1741, 1999, doi: 10.1007/3-540-46632-0_10.
- [3] L. Moskvin, R. Lavrenov, E. Magid, and M., Svinin, “Modelling a crawler robot using wheels as pseudo-tracks: model complexity vs performance” in IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), pp. 1–5, 2020.
- [4] A. Halme, I. Leppanen, S. Salmi, and S. Ylonen, “Hybrid locomotion of wheel-legged machine”, in Proc. CLAWAR 2000 Conf. Professional Engineering, 2000, vol. 1, pp. 167–173.
- [5] Ch. Grand, F. BenAmar, F. Plumet, and Ph. Bidaud, “Stability control of a wheel-legged mini-rover”, in Proc. CLAWAR 2002 Conf. Professional Engineering, 2002, vol. 1, pp. 323–330.
- [6] A. Gronowicz and J. Szrek, “Idea of a quadruped wheel-legged robot”, The Arch. Mech. Eng., vol. 54, pp. 263–278, 2009, doi: 10.24425/ame.2009.132101.
- [7] J. Szrek and P. Wójtowicz, “Idea of wheel-legged robot and its control system design”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 1, pp. 43–50, 2010, doi: 10.2478/v10175-010-0004-8.
- [8] V. ̧To ̧tu and C. Alexandru, “Multi-criteria kinematic optimization of a front multi-link suspension mechanism using DOE screening and regression model”, Appl. Mech. Mater., vol. 332, 351–356, 2013.
- [9] P. Ptak, M. Pierzgalski, D. Cekus, and K. Sokół, “Modeling and stress analysis of a frame with a suspension of a mars rover”, Procedia Eng., vol. 177, pp. 175–181, 2017, doi: 10.1016/j.proeng.2017.02.215.
- [10] B. Babu, N. Dhayanidhi, and S. Dhamotharan, “Design and fabrication of rocker bogie mechanism geosurvey rover”, Int. J. Sci. Develop. Res., vol. 3, no. 8, pp. 154–159, 2018.
- [11] R. Murambikar, V. Omase, V. Nayak, K. Pati, and Y. Mahulkar, “Design and fabrication of rocker bogie mechanism using solar energy”, Int. Res. J. Eng. Technol., vol. 6, no. 4, pp. 143–147, 2019.
- [12] K. Sokół, D. Cekus, and M. Pierzgalski, “Design and stress analysis of a frame with suspension to multitask terrain rover”, in Engineering Mechanics 2019, 2019, pp. 283–286, doi: 10.21495/71-0-283.
- [13] K. Sokół and M. Pierzgalski, “An influence of the material properties on the endurance of the self-adjustable rocker-bogie suspension”, Arch. Metall. Mater., vol. 66, no. 2, pp. 543–548, 2021, doi: 10.24425/amm.2021.135891.
- [14] P. Pierzgalski, P. Ptak, D. Cekus, and K. Sokół, “Modeling and stress analysis of a manipulator mounted on a mars rover”, Procedia Eng., vol. 177, pp. 121–126, 2017, doi: 10.1016/j.proeng.2017.02.199.
- [15] M. Caffrey et al., “The processing electronics and detector of the Mars 2020 SHERLOC Instrument”, in IEEE Aerospace Conference, pp. 1–8, 2020. doi: 10.1109/AERO47225.2020.9172527.
- [16] L. Deflores, R. Beegle, and L. Bhartia, “SHERLOC: Scanning habitable environments with Raman & luminescence for organics & chemicals”, IEEE Aerospace Conference, 2015, doi: 10.1109/AERO.2015.7119105.
- [17] T.I. Uday et al., “Design and Implementation of the Next Generation Mars Rover”. in 21st International Conference of Computer and Information Technology (ICCIT), 2018, pp. 1–6, doi: 10.1109/ICCITECHN.2018.8631928.
- [18] The University Rover Challenge. [Online]. Available: http://urc.marssociety.org/home/urc-news [Accessed: 10.03.2021].
- [19] O. Zienkiewicz, Metoda elementów skończonych. Arkady, Warszawa, 1972.
- [20] I. Rokach, “Generation and modification of meshes, assessment of their quality, achieving the convergence of results manually and using the self-adaptation procedure”. [Online] Available: http://www.tu.kielce.pl/~rokach/instr/mes_siatki.htm [Accessed 08.02.2021].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22488c11-feb9-4d83-87cf-fa46b8dde946