Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ammonium perchlorate (AP) is used as the most common oxidizer in composite solid propellants. Control of chlorate impurity in military grade ammonium perchlorate is important, since it has an undesirable effect on the thermal decomposition of ammonium perchlorate. In this work stabilized Ni/Fe bimetallic nanoparticles (S-Ni/Fe NPs) were synthesized using the borohydride reduction method (BRM) in the presence of starch as a stabilizing agent, and they were characterized by field emission scanning electron microscopy (SEM), and their X-ray diffraction pattern (XRD). The results showed that the synthesized S-Ni/Fe bimetallic nanoparticles were spherical in shape and had nearly uniform distribution, with particle sizes of 20-50 nm. The prepared nanoparticles were then used for the selective elimination of chlorate impurity in ammonium perchlorate. The main factors controlling the elimination of chlorate, such as the initial pH of the solution, dosage of S-Fe/Ni NPs, initial chlorate and perchlorate concentrations, reaction temperature, and reaction time, were optimized by using an experimental design based on the Taguchi method. An L9 orthogonal array (L9-OA) was used to design experiments with four 4-level factors (34). Under the optimal conditions, i.e., pH 6.5, at 30 °C and a dosage of 50 mg S-Ni/Fe NPs, chlorate was eliminated with nearly 100% efficiency in 50 mL of a solution containing 2.0 μg·mL−1 and 100 μg·mL−1 of chlorate and perchlorate, respectively, without change in perchlorate concentration.
Rocznik
Tom
Strony
120--133
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Malek Ashtar University of Technology, Lavizan, Tehran, Iran
autor
- Malek Ashtar University of Technology, Lavizan, Tehran, Iran
autor
- Malek Ashtar University of Technology, Lavizan, Tehran, Iran
Bibliografia
- [1] Jain, S.; Nandagopal, S.; Singh, P. P.; Radhakrishnan, K. K.; Bhattacharya, B. Size and Shape of Ammonium Perchlorate and Their Influence on Properties of Composite Propellant. Defense Sci. J. 2009, 59(3): 294-299.
- [2] Andric, A. M. Z. Crystallization of Ammonium-Perchlorate from Solution of Electrolytically Produced Sodium-Perchlorate in a Pilot-Scale Plant. European Congress of Chemical Engineering, Copenhagen, September, 2007.
- [3] Eger, C. Determination of Small Amounts of Chlorate in Ammonium Perchlorate. Anal. Chem. 1955, 27(7): 1199-1200.
- [4] Kubota, N.; Kuwahara, T.; Miyazaki, S.; Uchiyama, K.; Hirata, N. Combustion Wave Structures of Ammonium Perchlorate Composite Propellants. J. Propul.Power 1986, 2(4): 296-300.
- [5] Boldyrev, V. V. Thermal Decomposition of Ammonium Perchlorate. Thermochim. Acta 2006, 443(1): 1-36.
- [6] Singh, G.; Kapoor, I. P. S.; Dubey, S. Bimetallic Nanoalloys: Preparation, Characterization and Their Catalytic Activity. J. Alloys. Comp., 2009, 480(2): 270-274.
- [7] Military Specification, MIL-A-23442A. Bureau of Naval Weapons, Department of the Navy, Washington, D.C., 1965.
- [8] Long, R. A. Manufacture of Ammonium Perchlorate. Patent US 1453984, 1923.
- [9] Gale, W. T. Preparation of Ammonium Perchlorate. Patent US 3288560, 1966.
- [10] Conkling, J. A. Chemistry of Pyrotechnics. CRC Press, 2010, p.p. 68-75; ISBN: 9781574447408.
- [11] Stern, D. R. Process for Producing Ammonium Perchlorate. Patent US 3254947, 1966.
- [12] Moore, H. S.; Maurice, R. S. Removal of Chlorate and Hypochlorite from Electrolyte Cell Brine. Patent US 4397720, 1983.
- [13] Qiu, X.; Feng, Z. Degradation of Halogenated Organic Compounds by Modified Nano Zero Valent Iron. Prog. Chem. 2010, 22(2-3): 291-297.
- [14] Suguna, M.; Kumar, N. S.; Sreenivasulu, V.; Krishnaiah, A. Removal of Pb(II) from Aqueous Solutions by Using Chitosan Coated Zero Valent Iron Nanoparticles.Sep. Sci. Technol. 2014, 49(10): 1613-1622.
- [15] Teng, H.; Xu, S.; Zhao, C.; Lv, F.; Liu, H. Removal of Hexavalent Chromium from Aqueous Solutions by Sodium Dodecyl Sulfate Stabilized Nano Zero-Valent Iron: A Kinetics, Equilibrium, Thermodynamics Study. Sep. Sci. Technol. 2013, 48(11): 1729-1723.
- [16] Agrawal, A.; Tratnyek, P. G. Reduction of Nitroaromatic Compounds by Zero Valent Iron Metal. Environ. Sci. Technol. 1995, 30(1): 153-160.
- [17] Lin, K. S.; Dehvari, K.; Hsien, M. J.; Hsu, P. J.; Kuo, H. Degradation of TNT, RDX, and HMX Explosive Wastewaters Using Zero Valent Iron Nanoparticles.Propellants Explos. Pyrotech. 2013, 38(6): 786-790.
- [18] Naja, G.; Halasz, A.; Thiboutot, S.; Ampleman, G.; Hawari, J. Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Using Zero Valent Iron Nanoparticles. Environ. Sci. Technol. 2008, 42(12): 4364-4370.
- [19] Schaefer, C. E.; Topoleski, C.; Fuller, M. E. Effectiveness of Zero Valent Iron and Nickel Catalysts for Degrading Chlorinated Solvents and N-Nitroso Dimethylamine in Natural Ground Water. Water Environ. Res. 2007, 79(1): 57-62.
- [20] Han, Y.; Chen, Z. L.; Tong, L. N.; Yang, L.; Shen, J. M.; Wang, B. Y.; Chen, Q. Reduction of N-Nitroso Dimethylamine with Zero Valent Zinc. Water Res. 2013, 47(1): 216-224.
- [21] Lin, L.; Xu, B.; Lin, Y. L.; Yan, L.; Shen, K. Y.; Xia, S. J.; Hu, C. Y.; Rong, R. Reduction of N-Nitrosodimethylamine (NDMA) in Aqueous Solution by Nanoscale Fe/Al2(SO4)3. Water, Air & Soil Pollut. 2013, 224(7): 1-9.
- [22] Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles−Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22(11): 1179-1201.
- [23] Schrick, B.; Blough, J. L.; Jones, A. D.; Mallouk, T. E. Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles. Chem. Mater. 2002, 14(12): 5140-5147.
- [24] He, F.; Zhao, D. Y. Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environ. Sci. Technol. 2005, 39(3): 3314-3320.
- [25] Lien, H. L.; Zhang, W. X. Nanoscale Pd/Fe Bimetallic Particles:Catalytic Effects of Palladium on Hydrodechlorination. Appl. Catal. B-Environ. 2007, 77(1): 110-116.
- [26] Wang, C. B.; Zhang, W. X. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31(7): 2154-2156.
- [27] Cao, J.; Elliott, D.; Zhang, W. X. Perchlorate Reduction by Nanoscale Iron Particles. J. Nanopart. Res. 2005, 7(4-5): 499-506.
- [28] Kim, D. K.; Mikhaylova, M.; Zhang, Y.; Muhammed, M. Protective Coating of Super Paramagnetic Iron Oxide Nanoparticles. Chem. Mater. 2003, 15(8): 1617-1627.
- [29] Chatterjee, J.; Haik, Y.; Chen, C. J. Polyethylene Magnetic Nanoparticle: a New Magnetic Material for Biomedical Applications. J. Magn. Magn. Mater. 2002, 246(3): 382-391.
- [30] Pardoe, H.; Chua-Anusorn, W.; Pierre, T. G. S.; Dobson, J. Structural and Magnetic Properties of Nanoscale Iron Oxide Particles Synthesized in thePresence of Dextran or Poly Vinyl Alcohol. J. Magn. Magn. Mater. 2001, 225(1): 41-46.
- [31] Kataby, G.; Ulman, A.; Prozorov, R.; Gedanken, A. Coating of Amorphous Iron Nanoparticles by Long-Chain Alcohols. Langmuir 1998, 14(7): 1512-1515.
- [32] Liu, J.; He, F.; Zhao, D.; Roberts, C. Sugar-Stabilized Pd Nanoparticles Exhibiting High Catalytic Activities for Hydrodechlorination of Environmentally Deleterious Trichloroethylene. Langmuir 2007, 24(1): 328-336.
- [33] He, F.; Zhao, D. Manipulating, the Size and Dispersibility of Zero Valent Iron Nanoparticles by Use of Carboxy Methyl Cellulose Stabilizers. Environ. Sci. Technol. 2007, 41(17): 6216-6221.
- [34] He, F.; Zhao, D. Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environ. Sci. Technol. 2005, 39(9): 3314-3320.
- [35] He, F.; Zhao, D.; Liu, J.; Roberts, C. Stabilization of Fe-Pd Bimetallic Nanoparticles with Sodium Carboxy Methyl Cellulose for Enhanced Degradation of TCE in Water. Ind. Eng. Chem. Res. 2007, 46: 29-34.
- [36] Yamasaki, S.; Ohura, H.; Yano, K.; Nakamori, I. Spectrophotometric Determination of Chlorate Ion with Methyl-Orange. Bunseki Kagaku 1979, 28(9): 566-568.
- [37] Goncharuk, V. V.; Zui, O. V.; Kushchevskava, N. F. Methods of Determining Perchlorate. J. Water. Chem. Technol. 2009, 31(3): 186-194.
- [38] Taguchi, G.; Chowdhury, S.; Wu, Y. Taguchi Quality Engineering Handbook. Wiley, 2005, pp. 20-28; ISBN: 9780471413349.
- [39] Cao, J.; Elliott, D.; Zhang, W. Perchlorate Reduction by Nanoscale Iron Particles. J. Nanopart. Res. 2005, 7(4-5), 499-506.
- [40] Montgomery, D. C. Design and Analysis of Experiments. 5th ed., Wiley, 2000, pp. 21-54; ISBN 9780471316497.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22485a9c-346c-4903-bec3-0d65812346b3