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Abstract

The computational fluid dynamics (CFD) tools for various flow problems have become
widespread nowadays, yet their use still needs attention and care. In particular, tur-
bulence models are often a crucial part of flow computations undertaken with various
software packages, either commercial, open-source or in-house. In the paper, an overview
of available model categories is provided, together with some discussion of their advan-
tages or drawbacks with respect to flow cases of interest.
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1 Introduction

1.1 Motivation and aim

Turbulent regime is dominant in environmental and engineering fluid-flow
problems. Since the advent of computational fluid dynamics (CFD), soft-
ware packages have gained a lot of popularity. On the one hand, their func-
tionalities such as mesh generators, implemented models of the flow physics,
options of user-defined functions, numerical solvers and post-processing rou-
tines have become increasingly mature, general-purpose and efficient. On
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the other hand, the CFD tools are in general more and more user-friendly,
hence available also for less experienced practitioners. Yet, for an efficient
use of CFD packages, a good level of knowledge about flow thermomechan-
ics and numerical methods is a prerequisite.

Over the years, there have appeared various initiatives on CFD tuto-
rials, manuals, guides, user-groups mettings, etc. Among those, the idea
of summing-up the experience gathered on various aspects of CFD use and
related difficulties in the form of Best Practice Guide seems to be most help-
ful, see e.g. [4] or specific Internet sites. In particular, attention is needed
when it comes to the choice and use of turbulence models [5]. First, because
of many variants of such models available, with their inherent complexities
and subtleties. These issues include interrelationships with the mesh shape
(in particular near the flow boundaries), or even methods of flow solution:
the finite volume, now standard, the finite element or other approaches.
Second, because new model proposals (or combinations thereof, including
physical or zonal hybrid models) continue to appear and are tested for
various flow configurations and for physically-complex situations, such as
multiphase flows or combustion [2].

Due to the extreme richness and variety of turbulent flows, both in terms
of geometrical and physical complexity, there is a general agreement that no
single turbulence model, or closure, can be deemed universal, i.e., reason-
ably suitable for most of typical flow cases. As an introduction to the realm
of turbulence and its modeling, the textbooks [7, 16] or more specialized
monographs [8, 13] may be referred to. The aim of this paper is to provide
a brief overview of turbulence models and to sensitize the CFD users, in
particular the less experienced ones, to the advantages and drawbacks of
selected available closures with respect to flow cases of interest.

1.2 Fully resolved flow simulations

In turbulent flow, the fields of hydrodynamic quantities such as the veloc-
ity U(x, t) are tridimensional and unsteady. The approach that consists
in solving the complete system of governing flow equations (unsteady, 3D),
i.e., continuity, momentum (Navier-Stokes), and possibly energy, is known
as fully resolved, or direct, numerical simulation (DNS) [13]. All spatial
and temporal flow scales (eddies) are thus resolved, down to the smallest
ones, described by the Kolmogorov length scale, ηK , and timescale, τK . The
computational mesh size should be smaller than ηK and the time step of
the simulation should be smaller than τK . Given the integral length scale
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L (roughly the size of large, energetic eddies) which is close to the system
size, and the expression for the Kolmogorov scale [16], the number of mesh
nodes in 3D computations can be estimated as (L/ηK)3 ∼ ReL

9/4 where
ReL is the flow Reynolds number based on the length parameter L. This
incurs an extremely high computational cost of the DNS approach and lim-
its its applicability to simple geometries and fairly low Reynolds numbers.
On the other hand, the DNS allows for a precise control of flow parameters,
and is called ‘numerical experiment’. Therefore, DNS plays an increasingly
important role in turbulence research thanks to its insight into the flow
physics and the structure of turbulence: time evolution of 3D instantaneous
fields, multipoint correlations, probability distribution functions, as well as
the Lagrangian statistics (hardly available from experiments). The DNS
also serves to validate assumptions underlying various turbulence closures
through a priori analysis and to assess them through a posteriori tests [16];
an example of such approach to dispersed flow modeling is [11]. Moreover,
DNS is a precious tool to investigate turbulent reactive flows in simple ge-
ometries, because a sound description of chemical reactions involves scales
of the order of ηK and smaller (molecular mixing) that have to be modeled
in other methods.

The fully-developed channel flow with periodic boundary conditions is
one of the favourite flow cases of turbulence modellers. It may serve as
a reference case to estimate the computational effort of real-life industrial
applications such as duct flows or blade-to-blade channels in turbomachin-
ery, etc. In 1987, the first DNS of such a flow was done at Reτ = 180
(the Reynolds number based on the friction velocity). Recent results (2014,
J. Jimenez group) have been reported in [14]. Using the approximate rela-
tionship Reτ = 0.09Re0.88 [16], this corresponds to the channel half-width
based Reynolds number of Re = 2 × 105 which is still a way off typical
Reynolds numbers encountered in turbomachinery. Moreover, unlike indus-
trial CFD runs based on the second-order discretisation in physical space,
the channel flow DNS are most often performed with spectral solvers (ex-
cept for the wall-normal direction); such approach is extremely fast and
accurate. So, extrapolating the growth in computer resources to date, the
DNS of duct-like flows of practical interest may probably become feasible
in (a few) tens of years only. Simplified approaches to flow turbulence are
thus still with a reduced number of degrees of freedom being solved for.
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1.3 Rationale for a reduced description of flow turbulence

Strong fluctuations of flow quantities are an intrinsic feature of turbulence,
so it is natural to go for a statistical description of the phenomenon. This
initiated in 1895 with the seminal paper by O. Reynolds. The description
in terms of averaged flow fields is usually limited to the two lowest-order
moments: the mean values and the one-point, one-time, second-order cor-
relations. The closure variants are numerous and include algebraic, one-
equation, two-equation, and full Reynolds stress models [8]. With the
advent and development of DNS and LES approaches, the statistical clo-
sure models tend now to get classified into a common category of RANS
(Reynolds-averaged Navier-Stokes). This is because the starting point of
all these closures is the Reynolds averaging or, alternatively, the density-
weighted (Favre) averaging for compressible flows. The majority of the cur-
rently used engineering turbulence models belong to the category of RANS.

A well-known specific feature of flow turbulence is that it intensifies the
transport processes of mass, momentum and heat. Such an enhancement
is of paramount importance and bears consequences for global quantities
of direct engineering interest, as the species diffusion, the skin friction or
flow losses, and heat transfer. This is readily seen through the averaged
momentum equation for incompressible flow

ρ

(

∂Ui

∂t
+ U j

∂Ui

∂xj

)

= − ∂P

∂xi
+

∂

∂xj

(

µ
∂Ui

∂xj
− ρuiuj

)

+ ρgi , (1)

where the effective viscous term contains now an extra contribution, result-
ing in increased momentum transport, due to the turbulent stress tensor
Rij = uiuj or, more precisely, its deviatoric part. (NB: strictly, and dimen-
sionally consistent, the apparent stress is −ρuiuj). We note that half of
the trace of Rij tensor is the turbulent kinetic energy, k = Rii/2 = uiui/2.
The fluid density is ρ, and µ is the dynamic viscosity (ν = µ/ρ is the kine-
matic viscosity). Above, the flow velocity U and pressure P have been
formally decomposed into the mean (or smoothed) and fluctuating (or sub-
filter) parts: U = U + u and P = P + p, respectively. The averaging
is denoted by the symbol (·); it can be either statistical or local in space.
The statistical (ensemble) average leads to the so-called Reynolds-averaged
Navier-Stokes (RANS) closures considered at some length in Section 2. The
local weighted average (smoothing) yields the large-eddy simulation (LES)
approach, briefly addressed in Section 3.
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2 Statistical turbulence models

To characterise the turbulent velocity (at a given point and time instant)
at the statistical level, the one-point description involves at least the mean
value U and the turbulence intensity (given by k). Since the instantaneous
turbulent velocity is always 3D, a more accurate description should involve
complete second-order moments uiuj . Moreover, as all models considered
in this section use one-point statistics only, some length scale L is needed
to provide information about the spatial correlation of the field. Another
important quantity in turbulence modeling is a measure of the change-in-
time of the turbulent kinetic energy. In particular, because of the cascade
character of the energy transfer (from the large to small eddies, and then
to heat due to viscous action), a useful and physically meaningful quantity
is precisely the dissipation rate of k, called ε [m2/s3].

2.1 Eddy-viscosity closures

First, and possibly the most popular, class of RANS are eddy-viscosity
models (EVM) that introduce the effective (turbulent) viscosity, νt, based
on the Boussinesq hypothesis, to determine the Reynolds stress tensor, Rij,
from the linear relationship

Rij = −2νtSij +
2

3
kδij (2)

where Sij =
(

∂Ui/∂xj + ∂Uj/∂xi
)

/2 is the mean strain rate tensor. This
hypothesis is based on the analogy with the constitutive equation for New-
tonian fluid in general fluid mechanics. Some important remarks are in
order. The relationship (2) of Rij and Sij involves strong assumptions: it
is local, linear, and it contains a scalar proportionality factor νt (rather
than a 4th rank tensor). Though, there are numerous counter-examples
from real-life flows such as a confusor-like (or diffuser-like) flow section fol-
lowed by a straight duct [16]. The components of the turbulent stresses
evolve smoothly downstream, unlike the strain components, and Eq. (2)
cannot account for this stress history effect. This obviously undermines
the assumption of a local character of Eq. (2) and suggests that differential
models, with Rij governed by their evolution equations, are physically bet-
ter justified.

Also, the constitutive equation for Newtonian flow does not include any
dependence on the rotation tensor, since no shear stresses appear in lami-
nar purely rotational flows. However, in turbulent flows with swirl or body

ISSN 0079-3205 Transactions IFFM 127(2015) 45–62



50 J. Pozorski

forces due to the system rotation (e.g., a rotor analysed in a relative co-
ordinate system), such as the rotating channel flow, there is a clear de-
pendence of Rij on the system angular velocity. Neither such phenomena,
nor turbulence-driven secondary flows in ducts/channels can be correctly
predicted by linear EVM of Eq. (2). Hence the idea of non-linear eddy
viscosity models (NLEVM) [13] with the explicit dependence also on the
mean rotation tensor Ωij =

(

∂U i/∂xj − ∂U j/∂xi
)

/2. Alike, the linearity
of the Boussinesq hypothesis, with a scalar proportionality coefficient νt, is
best verified in thin shear flows with a dominant strain, say ∂Ux/∂y, pro-
portional to the shear stress uxuy, such as attached boundary layers, but
also jets and wakes. For such flows, Eq. (2) may be thought of as a def-
inition of νt. The thin shear flows are of importance in aerodynamic and
turbomachinery applications, including flows past slender bodies (profiles,
wings, blades, etc.) without separation. Therefore, even simple turbulence
closures, such as algebraic or one-equation models, may work fine for such
flows. Examples include the mixing-length-like formulae, the one-equation
Spalart-Allmaras model for νt, etc.

Among the EVM, the two-equation models (for the velocity scale and
for the length scale or its equivalent) are widely used, since the closure does
not require any input dependent on flow regime or geometry [4]. The tur-
bulent velocity scale, v, is most often found as v ∼

√
k from the transport

equation for the turbulent kinetic energy. Its exact (unclosed) form is read-
ily obtained as half of the trace of the Rij transport equations, see Eq. (6)
below. A suitable closure goes through the use of the gradient transport
hypothesis of the turbulent diffusion term, resulting in

Dk

Dt
=

∂

∂xi

[(

ν +
νt
σk

)

∂k

∂xi

]

+ P − ε (3)

where D/Dt stands for the material derivative along the mean streamlines
and P is the production rate of the turbulent kinetic energy

P = −∂Ui

∂xj
uiuj . (4)

In EVM, P is modeled, see Eq. (2); consequently, it is always nonnegative.
As discussed above, the one-point statistical closure has to be supple-

mented by the length-scale information. It is most often provided by the

dissipation rate, ε, of the turbulent kinetic energy k, given by ε = ν ∂ui

∂xj

∂ui

∂xj
.

Then, since L ∼ v3/ε for dimensional consistency, the turbulent viscosity
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needed in Eq. (2) to close Eq. (1) is found from νt = Cµk
2/ε, with a model

constant usually taken as Cµ = 0.09.
The transport equation for the dissipation rate contains the small-scale

information (the contribution of the smallest eddies to energy dissipation
is dominant). Therefore, it is usually closed in an empirical way (the RHS
terms of diffusion, production and destruction)

Dε

Dt
=

∂

∂xi

[(

ν +
νt
σǫ

)

∂ε

∂xi

]

+ (Cε1P − Cε2ε)
ε

k
(5)

where Cε’s are model constants. Alternatively, the length scale can be de-
termined as L ∼ v/ω with the turbulent frequency ω [1/s]. The ω transport
equation, once closed, has a similar structure (production, diffusion and de-
struction terms on the RHS) as the one for ε. The shear-stress transport
(SST) model by Menter with the ω equation improves modeling of flows
with separation regions. As the closure for ω has been reported to behave
better than the one for ε in the near-wall regions, some eddy-viscosity mod-
els link the two, with a switch at certain distance from the wall. Generally,
the eddy-viscosity closures have been recalled above in their high-Re form.
They use the so-called wall functions to bridge over the viscosity-dominated
near-wall region and avoid a fine and costly mesh there. In case of complex
geometry or flows with adverse pressure gradients (APG), the wall func-
tion approach may lead to inaccurate predictions. The low-Re variants of
turbulence models need then to be used [4].

The linear EVM are known to suffer from the overprediction of tur-
bulent energy in regions of high streamline curvature, e.g., upstream of
stagnation points [8, 13]. Typical examples are the leading edge zone of
a turbine blade, impinging jet, or flow reattachment regions. This modifies
the flow downstream through an increased boundary layer thickness, profile
losses, etc. Some curative measures with limiters for the production P have
been proposed, see [19]; another option is to use a NLEVM. Akin to it,
and promising for some more complex flows, are algebraic Reynolds stress
models (not discussed here).

2.2 Reynolds-stress models

Second, and possibly the most advanced, class of RANS are the Reynolds
stress models (RSM) where the transport equations for the turbulent stresses
are formulated and closed. Other widely-accepted acronyms for RSM exist,
such as differential stress model (DSM), second-moment closure (SMC) or
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Rij-ε models. The RSM do not use the notion of turbulent viscosity and al-
low for more physically sound modeling of various flow features, like history
effects, swirl, streamline curvature, system rotation and buoyancy [8], as
compared with simpler moment closures such as two-equation models (k-ε
or alike). Yet, the popularity of RSM in applications remains mitigated
because of a higher computational cost and, sometimes, mathematical dif-
ficulties with terms being closed.

The turbulent stress tensor −uiuj plays a central role in statistical tur-
bulence modeling. It appears as an unknown in the Reynolds-averaged mo-
mentum equation, Eq. (1), giving rise to the well-known closure problem.
According to Launder [8], a rationale for going up to the second-moment
closure is the principle of receding influence. The transport equation for
Rij is introduced on the premises that imperfections in closure models for
higher-order correlations (like uiujuk) reflect themselves in errors in the
correlations of directly-lower order (like uiuj), but have a limited impact
on moments of still lower order (like Ui). Hence the RSM provides better
chances for accurate predictions of the mean velocity field in turbulent flow
than eddy-viscosity models.

In the RSM, the components of Rij are treated as new variables gov-
erned by their own equations derived from the N-S equation. The transport
equation for uiuj symbolically writes

Duiuj
Dt

≡ ∂

∂t
uiuj + Uk

∂uiuj
∂xk

= Pij +Dν
ij +DT

ij +Dp
ij +Φij − εij . (6)

In the above equation, Pij is the production rate of the turbulent stresses
by the mean velocity gradients and Dν

ij is the viscous diffusion term

Pij = −uiuk
∂Uj

∂xk
− ujuk

∂Ui

∂xk
, Dν

ij = ν
∂2uiuj
∂xk∂xk

, (7)

DT
ij and Dp

ij are the turbulent diffusion terms by fluctuating velocity and
pressure, defined as follows

DT
ij = −

∂uiujuk
∂xk

, Dp
ij = −

1

ρ

(

∂pui
∂xj

+
∂puj
∂xi

)

= −1

ρ

∂

∂xk
(puiδjk + pujδik) ,

(8)
whereas Φij is the pressure-strain term and εij is the dissipation rate tensor

Φij =
p

ρ

(

∂ui
∂xj

+
∂uj
∂xi

)

, εij = 2ν
∂ui
∂xk

∂uj
∂xk

. (9)
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In the Reynolds stress transport equation (6), the production and viscous
diffusion terms are exact, Eq. (7), and require no modeling. On the other
hand, four RHS terms remain unclosed: DT

ij, Dp
ij , εij, and Φij . Of the four,

the pressure-strain term is arguably the most difficult to model.
The Φij term is of a purely redistributive nature: since Φii = 0, it has no

effect on the turbulent kinetic energy balance. It is further decomposed into
three contributions, stemming from the three source terms in the Poisson
equation for the fluctuating pressure (for this reason, the Φij term is non-
local and cannot be adequately modeled by local quantities). The three
contributions to the pressure-strain term are of differing physical nature,
and are usually referred to as the slow term, Φs

ij, (due to turbulent interac-
tions), the rapid term, Φr

ij, (due to the interactions of turbulence with the

mean shear) and the harmonic (or boundary) term, Φh
ij, that incorporates

the constraints imposed by the boundary conditions

Φij = Φs
ij +Φr

ij +Φh
ij . (10)

Usual hypotheses applied to derive the basic version of closure are:
high Reynolds number, local isotropy and quasi-homogeneity of turbulence.
These conditions are related to the assumed separation of energy-containing
and dissipative scales in the energy spectrum of turbulent motion: no effect
of molecular viscosity on large-scale eddies on the one hand, and no direct
influence of the mean fields on the dissipative eddies on the other hand.

First, the turbulent diffusion terms DT
ij and Dp

ij are to be modeled.

The turbulent pressure term Dp
ij is often smaller than DT

ij and sometimes
neglected. Yet, the two are usually lumped into a single diffusion term
Dij and modeled together (by adjusting the Cs constant below) with the
generalised gradient diffusion hypothesis as [13]

Dij = DT
ij +Dp

ij =
∂

∂xk

[(

Cs
k

ε
ukul

)

∂uiuj
∂xl

]

. (11)

The slow and rapid components of the pressure redistribution term are
modeled separately. An ingenious physical insight of Rotta allowed him to
propose the closure of the slow redistribution term in terms of the isotropi-
sation of turbulence. This corresponds, in a sense, to the cartoon of vortex
stretching cascade where vorticity becomes equally distributed among com-
ponents through nonlinear interactions. In homogeneous turbulence with
no imposed mean strain, Eq. (6) reduces to

Duiuj
Dt

= Φs
ij − εij . (12)
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It is experimentally observed that such a turbulence tends to the isotropic
state. Hence, with the useful definition of the normalised Reynolds stress
anisotropy tensor

bij =
uiuj
2k

− 1

3
δij , (13)

a linear return to isotropy is written as

Dbij
Dt

= −(C1 − 1)
ε

k
bij . (14)

On the other hand, the so-called rapid pressure term Φr
ij is modeled

using hints from the rapid distortion theory (RDT) that analytically deter-
mines the evolution of turbulence undergoing fast distortions and predicts
the isotropisation of the stress production rate tensor Pij [16]. The limit
cases of slow and rapid distortions are integrated in a following complete
picture, known as the basic pressure-strain model of Launder, Reece and
Rodi, or LRR-IP model, containing independently the return to isotropy,
derived from Eq. (14), and the isotropisation of production (IP):

Φij = −C1εbij − C2

(

Pij −
1

3
Pkkδij

)

. (15)

The first and second RHS terms of the basic pressure-strain model, Eq. (15),
are referred to as the Rotta model and the IP model, respectively; C1 and
C2 are model constants [8].

The usual way of closing the dissipation rate tensor εij in Eq. (6) goes
through the Kolmogorov assumption of locally isotropic turbulence at high
Reynolds numbers: due to the fact that dissipation occurs mainly at small
flow scales this tensor is to a good approximation isotropic, εij = (2/3)εδij .

In near-wall regions, the RSM need to by complemented by low-Re
modifications. One of the reasons is the existence of the wall-reflection
terms in pressure-strain correlations. An alternative to ad hoc damping
formulae has been the elliptic blending approach, still being improved in
RSM closures [14], and successfully developed also in PDF method for near-
wall flow solution [20].

The RSM, as other one-point statistical closures, needs the length-scale
equation, or its equivalent. This is provided by the dissipation rate ε of the
turbulent kinetic energy k, already introduced in Section 2.1. It is a scalar
resulting from the contraction of the dissipation rate tensor εij , present in
RSM equations:

ε =
1

2
εii = ν

∂ui
∂xj

∂ui
∂xj

. (16)

ISSN 0079-3205 Transactions IFFM 127(2015) 45–62



On general-purpose turbulence models in CFD 55

The closure of the ε transport equation is similar as in the eddy-viscosity
models, discussed before.

Finally, the complete set of RSM equations in its basic (high-Re) version
consist of the mean continuity, momentum, Eq. (1), the Reynolds stress
transport, Eq. (6), with adequate models for unclosed RHS terms, and the
transport equation for a time scale (or for the dissipation rate ε).

2.3 PDF methods

Roughly speaking, difficulties about the statistical modeling of turbulence
are twofold: nonlinearity and nonlocalness. The nonlinearity manifests
itself in the convective term of the N-S equations and is still present in
the Reynolds equations for the mean velocity as well as in the transport
equations for higher-order moments. Moreover, in chemically reactive flows
(combustion), the source terms in species conservation equations are usually
highly nonlinear.

The probability density function (PDF) approach remains statistical.
Yet, unlike EVM or RSM that resolve the moments of the velocity (the
mean field and, at most, the second-oder moments Rij), the PDF method
is based on the transport of the one-point probability density of velocity [16].
In the PDF method, contrary to the RANS moment approaches, there are
no problems due to nonlinearity. The convective terms are exact thanks
to the Lagrangian description and the source terms in the scalar transport
equations (if any) are exact thanks to introducing the species mass fractions
into the PDF; hence, no modeling is needed. At the level of the PDF
equation, the linearisation has been achieved at the expense of increasing the
number of independent variables (e.g., velocity). However, the remaining
major difficulty for both the PDF method and the moment closures (like
RSM) is the modeling of non-local effects that remain unknown in the one-
point description.

The departure point for the stochastic modeling of turbulence are the
trajectory equations (advection in physical space and the momentum equa-
tion):

dxi = Ui dt (17)

dUi =

(

−1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj

)

dt+

(

−1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

)

dt . (18)

Contrary to the moment closures where the point of departure is the Reynolds
equation, Eq. (1), in the PDF approach the closure is applied directly at
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the level of instantaneous flow variables. This is usually done with the
use of stochastic diffusion processes. The closure strategy, including also
heat transfer modeling, has been presented in [17]. The main idea is to
replace the exact instantaneous equations by modeled instantaneous ones.
In particular, a high-Reynolds model for the Navier-Stokes equation has the
form [16]:

dXi = Ui dt, (19)

dUi = −1

ρ

∂P

∂xi
dt+Gij(Uj − Uj)dt+

√

C0ε dWi, (20)

where C0 is a constant and U(t) is the velocity of a stochastic particle,
defined as the Eulerian fluid velocity U(x, t) evaluated at the particle po-
sition, i.e., U(t) = U [X (t), t]. It is readily seen that advection in Eq. (19)
is exact, the mean viscous term in Eq. (20) has been neglected and the
sum of the fluctuating terms (pressure gradient and diffusion of momen-
tum) has been replaced by a stochastic process of the diffusion type. The
drift matrix Gij is assumed to be a function of local mean variables, such
as uiuj , ∂Ui/∂xj , ε, etc.; various models have been proposed, some of them
in relationship with the Reynolds-stress equations. The closed trajectory
equations, Eqs. (19)–(20), form a system of stochastic differential equations
(SDEs) and are solved with the Monte Carlo method.

For the stochastic description to be self-contained, the values of the
mean dissipation rate, ǫ, at the particle locations are needed, cf. Eq. (20).
This can be done with a standard modeled PDE for ε, solved on a grid and
interpolated at particles. An alternative way, consistent with the stochastic
approach, goes through actually writing a model for the instantaneous dis-
sipation rate (or the turbulent frequency) along particle paths. Information
on the instantaneous dissipation not only gives access to the mean value
but also allows for the internal and external intermittency of the flow to be
directly simulated [17].

The PDF approach is more often used for computation of reactive flows
where it is applied to scalar variables (like the species mass fractions)
whereas the flow variables are found from a standard CFD RANS solver.
This results in a hybrid approach with a physical coupling of the two sets
of variables. The are some consistency issues; yet, the scalar PDF method
(recently, also coupled to LES solvers) offers an advantage of exact compu-
tation of species source terms and is suitable to all classes of reactive flows
(diffusion, premixed, partly premixed), also with complex chemical kinetics.
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3 Other closures, alternative solvers

3.1 Large eddy simulations

In the large eddy simulations (LES) setting [16], the averaging operator (·)
represents de facto a filter, hence Eq. (1) can be thought of as a smoothed
N-S equation where the small-scale instantaneous flow structures are filtered
out but the unsteady character of turbulent flow (in the sense of large-scale
instantaneous fields) will be preserved.

The idea of the LES approach is based on the assumption of the cascade
transport of turbulent energy, generated at the length scales, L, correspond-
ing to the largest flow structures, transported to smaller eddies through
nonlinear vortex interactions, down to the viscous dissipation at the small-
est scales. Physically, the filtering process removes the eddies smaller than
the filter size ∆. In practice, ∆ is the characteristic size of grid cells. The
removed part of the turbulent spectrum is called the sub-grid scale (SGS)
part. The filter size is chosen to solve a considerable part of the turbulent
kinetic energy of the flow at an acceptable cost of computations. In LES,
the filtering operator is defined as the convolution with the filter G

U i = G ∗ Ui , U i(x, t) =

∫

G(x− x
′, t)Ui(x

′, t)dx′, (21)

and the filtered transport equations have the same structure as the Reynolds
equation.

Applying the SGS viscosity hypothesis (analogous to the Boussinesq
hypothesis in RANS), the deviatoric part of the SGS stress tensor, here
τij = UiUj − U iU j , is assumed proportional to the resolved strain rate
Sij = (∂U i/∂xj + ∂U j/∂xi)/2 as

τij −
1

3
τkkδij = −2νsg Sij . (22)

The SGS viscosity may be found as the product of suitable length and
velocity scales, i.e., νsg ∼ lmvm, where lm ∼ ∆̄ and vm ∼ lm|S|:

νsg = CG∆̄
2|S̄| ; (23)

CG is a model coefficient and |S| = (2SijSij)
1/2 is the scalar strain rate

based on the second invariant of Sij . Despite many variants of SGS mod-
els proposed to date, this reamins an open reserch issue, in particular for
physically-complex flows.
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The LES approach is particularly well suited for free shear flows and
other flow configurations whose dynamics is dominated by large structures
(jets, flows past bluff bodies, wake-blade interactions, etc.). Unfortunately,
LES becomes quite expensive when it comes to wall-bounded turbulence,
since the near-wall vortical structures, crucial for a correct resolution of the
turbulent boundary layer, are small compared to those in the core. There-
fore, LES with wall functions and hybrid RANS-LES approaches are often
considered for the sake of efficiency. Yet, in general, thanks to the modeling
of small eddies only (rather than the whole spectrum) the LES closures are
simpler than the elaborate RANS variants and the instantaneous flow fields
are better simulated. These features, together with the continuing growth
of computer technology, make the LES approach increasingly popular in
engineering CFD applications.

3.2 Alternative methods: SPH, LBM

This section briefly addresses some new approaches for flow computation,
or solvers, alternative to the ‘mainstream’ CFD where finite volume or finite
element methods are most often used. Notwithstanding the solver, the issue
of turbulence modeling remains and needs considerable attention.

Smoothed particle hydrodynamics (SPH) is a Lagrangian (particle) ap-
proach, where the flow dynamics is represented by a (large) number of
coupled ordinary differential equations for particles’ advection and the evo-
lution of suitable quantities carried on by the particles (momentum, energy,
phase indicator, etc.) [19]. The approach is not (yet) used in the main-
stream CFD. However, it has already found some application areas, such
as free surface flows, two-phase flows with complex interfaces, problems in-
volving fluid-structure interactions (FSI), including/or the computation of
solid mechanics with material rupture, etc. One of the SPH advantages is
its meshless nature, avoiding thus the time-consuming grid generation for
complex geometries. This advantage becomes however a drawback when
a spatially-variable resolution or adaptive refinement are needed. SPH has
recently been applied to turbulent flows, with a mixed success [15]. Also,
a variant of SPH has been dealt with in [6] to simulate a generic free-shear
flow (turbulent mixing layer) using a particle-based LES.

For several years now, flow solvers based on the lattice-Bolzmann method
(LBM) have gained a lot of attention because of their computational advan-
tages. In LBM, unlike the classical CFD approaches based on the solution
of the macroscopic flow equations, the departure point is the Boltzmann
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equation discretised in physical space, time, and in the velocity space. For
a summary of the LBM capabilities, including turbulent and other complex
flows, a review paper [1] and references therein may be referred to. On the
advantageous side of LBM, even complex geometries are usually discretised
using a regular grid with a suitable implementation of boundary conditions.
This saves human effort, since the tedious meshing is no longer necessary.
Moreover, the LBM solvers are very efficient and readily subject to high
performance computing with massively parallel clusters or GPU (graphics
processing units) technology. On the other hand, the implementation of
more complex physics, such as chemical reactions or heat transfer [9], is not
straightforward. A recent paper [18] is a representative example of LBM
used for engineering flow studies (a water pump intake with the transient
vortex). Another example of LBM application to turbulent flow case, to-
gether with some comparisons to the finite-volume and SPH method is the
work [10].

3.3 Flow design

There is a lot of practical interest to apply CFD tools to the flow design
problem. Most often, flow design is formulated in terms of the optimisation
task that usually needs many time consuming solutions of the simple (or
analysis) flow problem. A demanding option goes through the reformulation
of the Reynolds equation (with a suitable turbulence model) to the stream
line coordinate system [3]. In practice, a whole new solver has to be written,
but this makes it possible to formulate an inverse problem and solve it in
a single shot, at least for a preliminary design. This allows one to accelerate
a tedious optimisation procedure, where each iteration step requires a flow
solution. The flow design may also be achieved in a hybrid approach where
an inverse method based on some assumptions about the streamline shape
(e.g., in turbomachinery) is coupled with the standard CFD flow analysis
that provides data on flow losses [12].

4 Conclusion and perspectives

The variety of turbulence models developed to date is impressive. In the pa-
per, a brief overview of some classes of closures has been made, including in
particular the two-equation eddy-viscosity models, RSM closures and LES,
because of their importance or future potential. Despite their widespread
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availability in CFD software packages, turbulent models are sometimes ap-
plied by less-experienced users without due attention (in the ‘black-box’
mode). This may result in inaccurate predictions (sometimes even com-
pletely wrong) or inefficient use of CFD tools.

The two-equation models are probably the most often used by CFD
practitioners, partly because of their ‘general-purpose’ flavour. Yet, for
particular applications, such as the streamlined flows in aerodynamics and
turbomachinery, even some simpler one-equation closures may work fine.
On the other hand, the Reynolds stress transport equations are definitely
more suitable for flow cases involving high streamline curvature, buoyancy
effects, or flows in rotating systems. For that class of flows, nonlinear EVM
or algebraic RSM are also used.

Apart from the classical CFD solvers and their application for flow anal-
ysis, alternative methods are developed and other areas of interest, such as
flow design, are explored. Also, new ideas for more efficient, or more de-
tailed, modeling of turbulent flows still appear. In the current CFD practice,
progress in available computing power causes already a shift from RANS-
based closures towards LES and hybrid approaches. Still, especially for the
analysis of complex turbulent flows (in terms of multiphysics or geometry),
an expert knowledge and skills of CFD users are required for success.

Received 5 March, 2015

References

[1] Aidun C.K., Clausen J.R.: Lattice-Boltzmann method for complex

flows. Annu. Rev. Fluid Mech. 42(2010), 439–472.

[2] Badur J.: Numerical modeling of sustainable gas turbine combustion.
IMP PAN Gdańsk (2003) (in Polish).

[3] Butterweck M.: Inverse design method for viscous flows in the stream-

function coordinates. PhD thesis, The Szewalski Institute of Fluid-Flow
Machinery PASci, Gdańsk 2014 (in Polish).

[4] Casey M., Wintergerste T. (Eds.): Best Practice Guidelines: Quality

and Trust in Industrial CFD. ERCOFTAC, 2000.

[5] Drobniak S.: Turbulence, from stochastic to deterministic approach.
Transactions IFFM 110(2002), 103–114.

ISSN 0079-3205 Transactions IFFM 127(2015) 45–62



On general-purpose turbulence models in CFD 61

[6] Duan G., Chen B.: Large Eddy Simulation by particle method cou-

pled with Sub-Particle-Scale model and application to mixing layer flow.
Appl. Math. Mod. 39(2015), 3135–3149.

[7] Elsner J.W.:, Flow Turbulence. PWN, Warszawa 1987 (in Polish).

[8] Gatski T.B., Hussaini M.Y., Lumley J.L. (Eds.): Simulation and Mo-

deling of Turbulent Flows. Oxford University Press, 1996.

[9] Grucelski A., Pozorski J.: Lattice Boltzmann simulations of heat trans-

fer in flow past a cylinder and in simple porous media. Int. J. Heat Mass
Tran. 86(2015), 139-148.

[10] Kajzer A., Pozorski J., Szewc K.: Large-eddy simulations of 3D Taylor-

Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice

Boltzmann and Finite Volume methods. J. Phys.: Conf. Ser. 530(2014),
art. 012019.

[11] Knorps M., Pozorski J., An inhomogeneous stochastic subgrid scale

model for particle dispersion in Large-Eddy Simulation. In: Direct and
Large-Eddy Simulation IX, 671–678, Springer, 2015.

[12] Krzemianowski Z., Puzyrewski R.: 3D computations of flow field in

a guide vane blading designed by means of 2D model for a low head

hydraulic turbine. J. Phys.: Conf. Ser. 530(2014), art. 012031.

[13] Launder B.E., Sandham N.D. (Eds.): Closure Strategies for Turbulent

and Transitional Flows. Cambridge University Press, 2002.

[14] Manceau R.: Recent progress in the development of the Elliptic Blend-

ing Reynolds-stress model. Int. J. Heat Fluid Flow 51(2015), 195–220.

[15] Mayrhofer A., Laurence D., Rogers B.D, Violeau D.: DNS and LES of

3-D wall-bounded turbulence using smoothed Particle Hydrodynamics.
Int. J. Heat Fluid Fl. 51(2015), 195–220.

[16] Pope S.B.: Turbulent Flows. Cambridge University Press, 2000.

[17] Pozorski J.: Stochastic modeling of turbulent flows. Bulletin of IFFM
PASci 536/1495/2004, Gdańsk 2004.

[18] Schneider A., Conrad D., Böhle M.: Lattice Boltzmann simulation

of the flow field in pump intakes—a new approach. J. Fluids Eng.
137(2015), art. 031105.

ISSN 0079-3205 Transactions IFFM 127(2015) 45–62



62 J. Pozorski

[19] Violeau D.: Fluid Mechanics and the SPH Method. Oxford University
Press, 2012.

[20] Wacławczyk M., Pozorski J., Minier J.P.: PDF computation of turbu-

lent flows with a new near-wall model. Phys. Fluids 16(2004), 1410–
1422.

ISSN 0079-3205 Transactions IFFM 127(2015) 45–62


