Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Understanding the condition, spatial arrangement, and changing patterns of vegetation cover holds significant scientific and economic importance. Satellite platforms offer a highly convenient means to study how vegetation reacts to atmospheric influences by gauging reflectance in the visible and near-infrared spectra. Given the numerous potential origins of environmental land cover variability, this study seeks to examine how vegetation cover influences water separation. This is achieved by identifying the chlorophyll index (CIG) and global environmental monitoring index (GEMI) to enhance the vital safeguarding of water sector against the encroachment of excessive vegetation. To gain deeper insights into the impact of extensive vegetated areas, we have analyzed the CIG and GEMI within Swansea County, situated in Wales, United Kingdom. These emphasized indices are applied and their effectiveness is evaluated using geographic information systems and remote sensing technology. The outcomes of the CIG and GEMI analyses reveal that the indexes exhibit their lowest and highest values at (-1.38) and (1.75105, -9.61413e+008) respectively. These findings indicate the presence of extensive vegetated regions with a substantial proportion of chlorophyll emissions being reflected into the atmosphere. The dispersion of chlorophyll concentrations across the environment implies a significant risk to the water sector, potentially resulting in severe shortages and the potential for future water scarcity. Elevated readings of the CIG and GEMI indicate extensive coverage of Earth’s surface by vegetation, impacting the crucial water resources essential humanity. It is prudent to safeguard freshwater reserves and utilize it wisely to maintain its permanence.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
259--270
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Structures and Water Resources Engineering Department, Faculty of Engineering, University of Kufa, Al-Najaf, Iraq
autor
- Department of Civil Engineering, Faculty of Engineering, University of Babylon, Babylon, Iraq
autor
- Department of Civil Engineering, College of Engineering, University of Misan, Misan, Amarah 62001, Iraq
Bibliografia
- 1. Anatoly A.G., Andrés V., Timothy J.A., Donald C.R., Galina K., Bryan L. 2002. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 29, 24. doi: 10.1029/2002GL016450.
- 2. Blaga L., Ilies D.C., Wendt J.A., Rus I., Zhu K., Dávid L.D. 2023. Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery. Remote Sens., 15, 3168. doi.org/10.3390/rs15123168.
- 3. Daughtry C.S.T., Walthall C.L., Kim M.S., de Colstoun E.B., McMurtrey J.E. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 74, 229–239. doi: 10.1016/S0034-4257(00)00113-9.
- 4. Delegido J., Verrelst J., Alonso L., Moreno J. 2011. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11, 7063–7081. doi: 10.3390/s110707063.
- 5. Dong T., Meng J., Wu B. 2012. Overview on methods of deriving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing. Acta Ecol. Sinica, 32, 7190–7201. doi: 10.5846/stxb201110211562.
- 6. Duy B.D., Dung T.N., Hoi D.N., Hieu H.V.N., Ngoc T.D. 2023. Free satellite image data application for monitoring land use cover changes in the konha nung plateau, vietnam. Heliyon, 9, 1–16. doi.org/10.1016/j.heliyon.2023.e12864.
- 7. Frédéric B., Olivier H., Bernhard G., Patrice B., Bastien M., Mireille H., Béatrice B., Fernando N., Marie W., Olivier S., Jean L.R., Marc L. 2007. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ., 110, 275–286. doi: 10.1016/j.rse.2007.02.018.
- 8. Gitelson A.A., Kaufman Y.J., Merzlyak M.N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298. doi.org/10.1016/S0034-4257(96)00072-7.
- 9. Gitelson A.A., Peng Y., Huemmrich K.F. 2014. Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data. Remote Sens. Environ., 147, 108–10. doi: 10.1016/j.rse.2014.02.014.
- 10. Haboudane D., Tremblay N., Miller J.R., Vigneault P. 2008. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans. Geosci. Remote Sens., 46(2), 423–437. doi: 10.1109/TGRS.2007.904836.
- 11. Holben B.N., Fraser R.S. 1984. Red and near-infrared sensor response to off-nadir viewing. International Journal of Remote Sensing, 5, 145–160. doi.org/10.1080/01431168408948795.
- 12. Holben B.N., Kimes D., Fraser R.S. 1986. Directional reflectance response in AVHRR red and near infrared bands for three cover types and varying atmospheric conditions. Remote Sensing of Environment, 19, 213–236. doi.org/10.1016/0034-4257(86)90054-4.
- 13. Holben B.N. 1986. Characteristics of maximumvalue composite images from temporal AVHRR data. International Journal of Remote Sensing, 7, 1417–1434. doi.org/10.1080/01431168608948945.
- 14. Hunt E.R., Doraiswamy P.C., McMurtrey J.E., Daughtry C.S.T., Perry E.M., Akhmedov B. 2013. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Observ. Geoinf., 21, 103–112. doi: 10.1016/j.jag.2012.07.020.
- 15. Intergovernmental Panel on Climate Change (IPCC) 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- 16. Largest Cities in the UK 2017. UK Cities . Archived from the original on 22 October 2017. [updated 2023 August 10; cited 2023 August 10]. Available from: https://en.wikipedia.org/wiki/Swansea.
- 17. Lee T.Y., Kaufman Y.J. 1986. Non-lambertian effects on remote sensing of surface reflectance and vegetation index. IEEE Transactions on Geoscience and Remote Sensing GE-24, 699–707. doi: 10.1109/TGRS.1986.289617.
- 18. Millennium Ecosystem Assessment 2005. Ecosystems and Human Well-being: Synthesis. Island Press. doi: 20.500.11822/8701.
- 19. Nathalie P., William F.L., Timothy G.O., Martin W., Harini N., Woody T. 2009. Satellite remote sensing for applied ecologists: opportunities and challenges. Journal of Applied Ecology, 46.6. doi: 10.1111/1365-2664.12261.
- 20. Ogutu B., Dash J., Dawson T.P. 2014. Evaluation of the influence of two operational fraction of absorbed photosynthetically active radiation (FAPAR) products on terrestrial ecosystem productivity modeling. Int. J. Remote Sens., 35, 321–340. doi:10.1080/01431161.2013.871083.
- 21. Peel M.C., Finlayson B..L, McMahon T.A. 2007. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11(5), 1633–1644. doi: 10.5194/hess-11-1633-2007.
- 22. Peng Y.., Gitelson A., Keydan G., Rundquist D.C., Moses W. 2011. Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content. Remote Sens. Environ., 115, 978–989.
- 23. Penuelas J., Baret F., Filella I., Mercedes G. 1995. Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthesis Research, 46(3), 189-195.
- 24. Pettorelli N., Safi K., Turner W. 2014. Satellite remote sensing, biodiversity research and conservation of the future. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1643):20130190. doi: 10.1098/rstb.2013.0190.
- 25. Pinty B., Lavergne T., Widlowski J.L., Gobron N., Verstraete M.M. 2009. On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption. Remote Sens. Environ., 113, 10–23. doi: 10.1016/j.rse.2008.08.017.
- 26. Pinty B., Verstraete M. 1992. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio, 101:15–20. doi.org/10.1007/BF00031911.
- 27. Solano-Correa Y.T., Bovolo F., Bruzzone L. 2018. An approach for unsupervised change detection in multitemporal VHR Images acquired by different multispectral sensors. Remote Sens., 10, 533. doi:10.3390/rs10040533.
- 28. Student information – Swansea geography 2007. City and County of Swansea. 2007. Archived from the original (PDF) on 8 August 2007. [updated 2023 August 10; cited 2023 August 10]. Available from: https://en.wikipedia.org/wiki/Swansea.
- 29. UK climate extremes 2023. Met Office. Archived from the original on 9 March 2023. [updated 2023 August 10; cited 2023 August 10]. Available from: https://en.wikipedia.org/wiki/Swansea.
- 30. United Nations Environment Programme (UNEP) 2002. Global Environmental Outlook 3.
- 31. Verger A., Baret F., Camacho F. 2011. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sens. Environ., 115, 415–426. doi: 10.1016/j.rse.2010.09.012.
- 32. Viña A., Gitelson A.A., Nguy-Robertson A.L., Peng Y. 2011. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops 2011. Remote Sens. Environ., 115, 3468–3478. doi: 10.1016/j.rse.2011.08.010.
- 33. World Health Organization (WHO) 2016. Ambient air pollution: A global assessment of exposure and burden of disease.
- 34. Wu C., Niu Z., Tang Q., Huang W. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. Forest Meteorol., 148, 1230–1241. doi: 10.1016/j.agrformet.2008.03.005.
- 35. Zarco-Tejada P.J., Miller J., Morales A., Berjón A., Agüera J. 2004. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ., 90, 463–476. doi: 10.1016/j.rse.2004.01.017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22456f29-a969-4e05-bf6d-8b1a72806f6c