Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In most areas of human activity where vehicles are used, ensuring their mobility is important. One of the components addressed in the framework of mobility is also the movement of vehicles in the field. The article deals with the assessment of wheeled vehicles' traffic ability through low-bearing terrain. Therefore, it is important to be able to reliably evaluate whether the terrain is passable or not, i.e. determining the traffic ability of the terrain. Currently, two assessment systems are used in the ACR environment to evaluate the bearing capacity of the terrain – one using a PT-45 telescopic penetrometer and the other using a cone penetrometer. Each of the systems has its advantages and disad-vantages, but unfortunately, none of them meet the current requirements of users. Both methods designed for evaluating the passability of wheeled vehicles on terrain always compare the “value of the land” and the “value of the vehicle”. Based on the advantages and disadvantages of both evaluation methods, the authors decided to find out whether it would be possible to combine the advantages of both methods and propose a new evaluation system for the telescopic penetrometer, based on the evaluation system for the cone penetrometer. The following was carried out: 1) comparison of individual devices and assessment procedures, 2) correlation of permeability measurement results obtained using both penetrometers, 3) analysis of individual vehicle parameters included in existing assessment methods. The authors present the results of the analysis of the parameters, propose their reduction, and introduce a new important parameter, which significantly affects the result, that is, whether the vehicle will pass the terrain. In conclusion, a completely new system for measuring the passability of wheeled vehicles through the terrain was designed. The correctness and reliability of the entire newly designed system was verified by measurements in the field. Due to the fact that the authors proceeded to solve the problem of trafficability on the basis of requirements from the field, its results will have a great practical impact – the implementation of the new evaluation system into the Field Manual used by the ACR.
Czasopismo
Rocznik
Tom
Strony
131--153
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
- University of Defence, Faculty of Military Technology, Department of Engineer Technology, Brno, Czech Republic
autor
- University of Defence, Faculty of Military Technology, Department of Engineer Technology, Brno, Czech Republic
autor
- University of Defence, Faculty of Military Technology, Department of Engineer Technology, Brno, Czech Republic
autor
- University of Defence, Faculty of Military Technology, Department of Mathematics and Physics, Brno, Czech Republic
Bibliografia
- 1. Alesso, C. A., Cipriotti, P. A., Masola, M. J., Carrizo, M. E., Imhoff, S. C., Rocha-Meneses, L., et al. (2020). Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques. Agronomy Research, 18(1), 1115-1126. https://doi.org/10.15159/AR.20.133.
- 2. Alesso, C. A., Masola, M. J., Carrizo, M. E., Cipriotti, P. A., & Imhoff, S. D. (2018). Spatial variability of short-term effect of tillage on cone index. Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2018.1532076.
- 3. Borkowska, S., & Pokonieczny, K. (2021). Soil passability analysis in the open terrain. In: International Conference on Military Technologies (ICMT), Czech Republic. ISBN (Online): 978-1-6654-3724-0.
- 4. Calderon, L. A., & Piedrahita, C. A. (2019). New Methodology for Inertial Identification of Low Mobility Mechanisms Considering Dynamic Contribution. International Journal of Automotive and Mechanical Engineering, 7341-7363. Universiti Malaysia Pahang, Pahang, Malaysia. https://doi.org/10.15282/ijame.16.4.2019.11.0545.
- McCullough, M., Jayakumar, P., Dasch, J., & Gorsich, D. (2017). The Next Generation NATO Reference mobility model development. Journal of Terramechanics, 49-60. https://doi.org/10.1016/j.jterra.2017.06.002.
- 6. Cibulová, K., & Priesner, M. (2022). Parameters and Influences for an Evaluation System of Trafficability of Vehicles on Terrain. In Challenges to National Defence in Contemporary Geopolitical Situation, Lithuania, (1), 7-16. https://doi.org/10.47459/cndcgs.2022.1.
- 7. Cibulová, K., Priesner, M., & Rolenec, O. (2020). Overcoming Areas Covered by Snow with Perspective Materials. In S. Bekesiene & S. Hoskova-Mayerova (Eds.), Challenges to National Defence in Contemporary Geopolitical Situation (CNDCGS 2020), Lithuania, 52-55. https://doi.org/10.47459/cndcgs.2020.6.
- 8. Davidson, D. T. (1965). Penetrometer measurements. In A. Klute (Ed.), Methods of soil analysis. Part 1 (2nd ed., Agronomy Monograph 9, pp. 463-478). ASA and SSSA.
- 9. Di Maria, E., Reina, G., Ishii, K., & Guiannoccaro, N. I. (2021). Rolling resistance and sinkage analysis by comparing FEM and experimental data for a grape transporting vehicle. Journal of Terramechanics, 59-70. https://doi.org/10.1016/j.jterra.2021.06.0.
- 10. Ewing, J., Oommen, T., Jayakumar, P., & Alger, R. (2020). Characterizing Soil Stiffness Using Thermal Remote Sensing and Machine Learning. MDPI - Remote Sensing, 12(4), 15. https://doi.org/10.3390/rs13122306.
- 11. United States Army. (1994). Field manual 5-430-00-1: Planning and design of roads, airfields, and heliports in the theater of operations - Road design.
- 12. Goodin, C., Dabbiru, L., Hudson, C., Mason, G., Carruth, D., & Doude, M. (2020). Fast terrain travers-ability estimation with terrestrial lidar in off-road autonomous navigation. Unmanned Systems Technology XXIII. https://doi.org/10.1117/12.2585797.
- 13. Hasilová, K., Otřísal, P., & Stodola, P. (2023). Smoothing Methods for Continuous Permeation Data Measured Discretely Designated for Quick Evaluation of Barrier Materials. Advances in Military Technology, 18(2), 207-222. https://doi.org/10.3849/aimt.01826.
- 14. Huang, W., Wong, J. Y., Preston-Thomas, J., & Jayakumar, P. (2020). Predicting terrain parameters for physics-based vehicle mobility models from cone index data. Journal of Terramechanics, 29-40. https://doi.org/10.1016/j.jterra.2019.12.004.
- 15. Jayakumar, P., & Wasfy, T. (2021). Next-generation NATO reference mobility model complex terramechanics – Part 1: Definition and literature review. Journal of Terramechanics, 96, 45-57. https://doi.org/10.1016/j.jterra.2021.02.002.
- 16. Jayakumar, P., & Wasfy, T. (2021). Next-generation NATO reference mobility model complex terramechanics – Part 2: Requirements and prototype. Journal of Terramechanics, 96, 59-79. https://doi.org/10.1016/j.jterra.2021.02.007.
- 17. Jekl, J., Jánský, J. (2022) Security Challenges and Economic-Geographical Metrics for Analyzing Safety to Achieve Sustainable Protection. Sustainability, 14, 15161. https://doi.org/10.3390/su142215161.
- 18. Kozłowski, E., Borucka, A., Oleszczuk, P., & Jałowiec, T. (2023). Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 25(4). http://doi.org/10.17531/ein/172857.
- 19. Kurfiřt, J. (2014). Analysis of the degree of influence of the types of tyres used on off-road passability (Diploma thesis). University of Defence, Brno, Czech Republic.
- 20. Liu, Y., Jiang, C., Mourelatos, Z. P., Gorsich, D., & Jayakumar, P. (2020). Simulation-Based Mission Mobility Reliability Analysis of Off-Road Ground Vehicles. Mechanical Design, 143-158. https://doi.org/10.1115/1.4048314.
- 21. Lee, J. S., Kim, S. Y., Hong, W. T., & Byun, Y. H. (2019). Assessing subgrade strength using an instrumented dynamic cone penetrometer. Soils and Foundations, 59, 930-941. https://doi.org/10.1016/j.sandf.2019.03.005.
- 22. Mahonen, J., Lientzén, N., & Casselgren, J. (2021). Portable bevameter for measuring snow properties in the field. Cold Regions Science and Technology. https://doi.org/10.1016/j.coldregions.2020.103195.
- 23. Malik, A. S., Kumar, R. J., & Rahman, H. (2020). Mobility Performance Prediction Model for Main Battle Tanks. International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. https://doi.org/10.4271/2020-28-0355.
- 24. Mason, G. L., Vahedifard, F., Caster, T. J., & Priddy, J. D. (2022). A unified equation for predicting gross traction for wheels on clay over a range of braked, towed, and powered operations. Journal of Terramechanics, 104, 1-13. https://doi.org/10.1016/j.jterra.2022.08.002.
- 25. Mason, G. L., Salmon, J. E., McLeod, S., Jayakumar, P., Cole, M. P., & Smith, W. (2020). An overview of methods to convert cone index to bevameter parameters. Journal of Terramechanics, 87, 1-9. https://doi.org/10.1016/j.jterra.2019.10.001.
- 26. Mechergui, D., & Jayakumar, P. (2020). Efficient generation of accurate mobility maps using machine learning algorithms. Journal of Terramechanics, 88, 53-63. https://doi.org/10.1016/j.jterra.2019.12.002.
- 27. Moraes, M. T., Silva, V. R., & Zwirtes, A. L. (2014). Use of penetrometers in agriculture: A review. Engenharia Agrícola, 179-193. https://doi.org/10.1590/S0100-69162014000100019.
- 28. Oh, J., Nam, J.-S., Kim, S., & Park, Y.-J. (2019). Influence of tire inflation pressure on the estimation of rating cone index using wheel sink age. Journal of Terramechanics, 84, 13-20. https://doi.org/10.1016/j.jterra.2019.04.002.
- 29. Parker, M., Stott, A., Bodie, M., Frankenstein, S., & Shoop, S. (2021). Vehicle mobility on highly organic soils. Journal of Terramechanics, 98, 16-24. https://doi.org/10.1016/j.jterra.2021.09.001.
- 30. Prikner, P., Grečenko, A., & Prazan, R. (2017). Application of tire rating with the aim to implement the matter on agricultural tires. 19th International and 14th European-African Regional Conference of the ISTVS, Hungary.
- 31. Pundir, S. K., & Garg, R. D. (2021). Development of an empirical relation to assess soil spatial variability for off-road trafficability using terrain similarity analysis & geospatial data. Remote Sensing Letters, 12(3), 259–268. https://doi.org/10.1080/2150704X.2021.1880657.
- 32. Pundir, S. K., & Garg, R. D. (2022). A comprehensive approach for off-road trafficability evaluation and development of modified equation for estimation of RCI to assess regional soil variation using geospatial technology. Quaternary Science Advances 5. https://doi.org/10.1016/j.qsa.2021.100042.
- 33. Rybansky, M. (2020). Determination of the ability of military vehicles to override vegetation. Journal of Terramechanics, 91, 129-138. https://doi.org/10.1016/j.jterra.2020.06.004.
- 34. Shenvi, M. N., Sandu, C., & Untaroiu, C. (2022). Review of compressed snow mechanics: Testing meth-ods. Journal of Terramechanics 100, 25–37. https://doi.org/10.1016/j.jterra.2021.11.006
- 35. Sládek, D., & Kolář, P. (2023). Assessing the Quality of Non-Professional Meteorological Data for Op-erational Purposes. Advances in Military Technology, 18(2), 275-289. https://doi.org/10.3849/aimt.01781.
- 36. Vahedifard, F., Williams, J. M., Mason, G. L., Howard, I. L., & Priddy, J. D. (2017). Development of a multi-year database to assess off-road mobility algorithms in fine-grained soils. Journal of Vehicle Per-formance, 3-18. https://doi.org/10.1504/IJVP.2017.081259.
- 37. Vennik, K., Kukk, P., Krebstein, K., Reintam, E., & Keller, T. (2018). Measurements and simulations of rut depth due to single and multiple passes of a military vehicle on different soil types. Soil and Tillage Research, 186, 120-127. https://doi.org/10.1016/j.still.2018.10.011
- 38. Wasfy, T. M., Jayakumar, P., Mechergui, D., & Sanikommu, S. (2018). Prediction of vehicle mobility on large-scale soft-soil terrain maps using physics-based simulation. International Journal of Vehicle Performance, 347-381. https://doi.org/10.1504/IJVP.2018.095753.
- 39. Wieder, W. L., & Shoop, S. A. (2018). State of the knowledge of vegetation impact on soil strength and trafficability. Journal of Terramechanics 78, 1-14. https://doi.org/10.1016/j.jterra.2018.03.006.
- 40. Wiejak, G., Grzelak, M., & Mroczek, R. (2023). Rating of the Mobility of Military Logistic Vehicles Used in the Polish Armed Forces. Advances in Military Technology, 18(1), 79-86. https://doi.org/10.3849/aimt.01788
- 41. Williams, J. M., Vahedifard, F., Howard, I. L., Borazjani, A., Mason, G. L., & Priddy, J. D. (2019). Mobility guidance for tracked vehicles on fine-grained soil from historical full-scale test data in DROVE 2.0. Journal of Terramechanics 84, 1-12. https://doi.org/10.1016/j.jterra.2019.04.003
- 42. Wong, J. Y., Jayakumar, P., Toma, E., & Preston-Thomas, J. (2020). A review of mobility metrics for next-generation vehicle mobility models. Journal of Terramechanics 87, 11-20. https://doi.org/10.1016/j.jterra.2019.10.003.
- 43, Wright, K. R., Botha, T. R., & Els, P. S. (2019). Effects of age and wear on the stiffness and friction properties of an SUV tyre. Journal of Terramechanics 84, 21-30. https://doi.org/10.1016/j.jterra.2019.04.001.
- 44. Zhukov, S. S., Makarov, V. S., & Belyakov, V. V. (2020). Method of development of snow mobility maps. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1753/1/012028.
- 45. Ministry of Defence. (1987). Žen 2-16 Military roads and ways.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22420026-64c1-4903-9004-3993d4d0e33c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.