PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aesthetic and functional aspects of BIPV – an architectural outlook

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The growing interest in the application of photovoltaics in construction resultsin solutions based on the concept of integration with the architecture of thebuilding. This means that the challenge lies not only in the technical integrationitself but in accordance with the concept of building integrated photovoltaics(BIPV), integration results in closer ties with architecture. The following article aims to determine the current possibilities with regard tothe integration of PV technology with the building (narrowed down to the useof PV cells and PV modules) and, consequently, the role of BIPV in modernarchitecture in terms of aesthetics and functionality, including the relationship ofthe building with the environment. The paper offers an architectural perspectiveon the problem while omitting detailed technological issues. To illustrate the considerations, carefully selected design examples (includingthose developed by the author) are used, which enable these possibilities to bedefined across a broad spectrum. Research prompts the conclusion that the development of biPv strengthensthe relationship between Pv technology and architecture, both in terms ofaesthetics and utility. This relationship is synergistic and stimulates the paralleldevelopment of Pv technology as architectural solutions.
Słowa kluczowe
Rocznik
Strony
art. no. e2023010
Opis fizyczny
Bibliogr. 60 poz., tab., il.
Twórcy
  • University of Ecology and Management in Warsaw
Bibliografia
  • 1. Amo, S.A., Sukki, F.M., Bennadji, A., Sellami, N. (2021). Myth or gold? The power of aesthetics in the adoption of building integrated photovoltaics (BIPVs). Energy Nexus, 4, 100021. https://doi.org/10.1016/j.nexus.2021.100021
  • 2. Barraud, E., Stained Glass Solar Windows for the Swiss Tech Convention Center. https://actu.epfl.ch/news/stained-glass-solar-windows-for-the-swiss-tech-con/ (accessed 20.06.2023).
  • 3. Biyik, E., Araz, M., Hepbasl, A., Shahrestani, M., Yao, R. Shao, L., Essah, E. et al. (2017). A key review of building integrated photovoltaic (BIPV) systems. Engineering Science and Technology. Engineering Science and Technology. An International Journal, 20, 3, 833–858. https://doi.org/10.1016/j.jestch.2017.01.009
  • 4. Costanzo, V., Yao, R. Essah, E., Shao, L., Shahrestani, M., Oliveira, A.C., Araz, M., Hepbasli, A., Biyik, E. (2018). A method of strategic evaluation of energy performance of building integrated Photovoltaic in the urban context. Journal of Cleaner Production, 184, 82–91. https://doi.org/10.1016/j.jclepro.2018.02.139
  • 5. Ghosh, A. (2022). Fenestration integrated BIPV (FIPV): A review. Solar Energy, 237, 213-230. https://doi.org/10.1016/j.solener.2022.04.013
  • 6. Gosh, A., Norton, B. (2019). Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply. Renewable Energy, 131, 993-1001. https://doi.org/10.1016/j.renene.2018.07.115
  • 7. Gonçalves, H., Silva, A., Ramalho, A., Rodrigues, C. (2008). Thermal Performance of a Passive Solar Office Building in Portugal, materiały konferencyjne Eurosun2008- 1st International Congress on Heating, Cooling and Buildings, Lisbon 7-10 October 2008 (In: Proceedings-Sustainable Building, no. 382).
  • 8. Haghighat, S., Sadeh, H. (2023). Parametric design of an automated kinetic building façade using biM: A case study perspective. Journal of Building Engineering, 73, 106800. https://doi.org/10.1016/j.jobe.2023.106800
  • 9. Heinstein, P., Ballif, Ch., Perret-Aebi, L-E. (2013). Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers, and Myths. Green, 3(2), 125–156. https://doi.org/10.1515/green-2013-0020
  • 10. Hermannsdörfer, I., Rüb Ch. (2005). Solar Design. Photovoltaics for Old Buildings, Urban Space, Landscapes. Ed. Jovis.
  • 11. Hu, J. H., Chen, W. J., Liu, Y., Zhao, B., Yang, D., & Ge, B. (2017). Two-layer ETFE cushions integrated flexible photovoltaics: Prototype development and thermal performance assessment. Energy and Buildings, 141, 238–46. https://doi.org/10.1016/j.enbuild.2017.02.038
  • 12. Huang, L.-M., Hu, Ch.-W., Pen, Ch.-Y., Su, Ch.-H., Ho, K.-Ch.(2016). Integration of polyelectrolyte based electrochromic material in printable photovoltaic electrochromic module. Solar Energy Materials & Solar Cells 145, 69–75. https://doi.org/10.1016/j.solmat.2015.05.011
  • 13. Humm, O., Toggweiler, P. (1993)., Photovoltaics in Architecture, Birkhäuser.
  • 14. International Definitions of “BIPV.” PVPS Task 15, Subtask C-International Framework for BIPV Specification. Report IEA-PVPS T15-4:2018 IEA. international Energy Agency 2018.
  • 15. Jones, D.L. (1999). The Solar office: a solar powered building with a comprehensive energy strategy (w: European Directory of Sustainable and Energy Efficient Building, ed. James&James).
  • 16. Li, D.H.W., Lam T.N.T., Chan W.W.H., Mak A.H.K., (2009). Energy and cost analysis of semi-transparent photovoltaic in office buildings. Applied Energy, 86, Issue 5, 722-729. https://doi.org/10.1016/j.apenergy.2008.08.009
  • 17. Lucchi, E. (2022). Integration between photovoltaic systems and cultural heritage: A socio-technical comparison of international policies, design criteria, applications, and innovation developments. Energy Policy, 171, 113303 https://doi.org/10.1016/j.enpol.2022.113303
  • 18. Marchwiński, J.(2023). Architectural analysis of photovoltaic (PV) modules applications on non-flat roofs. Acta Scientiarum Polonorum Architectura 22, (1), 3-12. DOI: 10.22630/ASPA.2023.22.1.1.
  • 19. Marchwiński, J. (2021b). Evaluation of PV Powered Switchable Glazing Technologies in terms of their Suitability for Office Windows in Moderate Climates, Journal of Green Building 16(4), 81–110. https://doi.org/10.3992/jgb.16.4.81
  • 20. Marchwiński, J. (2012). Fasady fotowoltaiczne. Technologia PV w architekturze. Warszawa: Wydawnictwo WSEiZ.
  • 21. Marchwiński, J. (2015). Fotowoltaika zintegrowana z budynkiem (BIPV) w kontekście kształtowania form architektonicznych; In: Kontekst energetyczny kształtowania form architektonicznych w badaniach i projektach (red. Marchwiński J.). Warszawa: Wydawnictwo WSEiZ.
  • 22. Marchwiński, J. (2021a). Role and Factors of Solar Facades Shaping in Contemporary Architecture. Budownictwo i Architektura 20(3) 43–56. https://doi.org/10.35784/bud-arch.2640
  • 23. Marchwiński, J., Starzyk, A. (2021). Problematyka projektowania budynków przedszkoli ze szczególnym uwzględnieniem aspektów ekologiczno-energetycznych. Projekt energoefektywnego przedszkola w Michałowicach Cz. 2. Builder 286(5), 44–49. 10.5604/01.3001.0014.8342
  • 24. Marchwiński, J. (2022). Theoretical Models of PV-EC Windows Based on the Architectural Analysis of Pv-EC Technologies. Architecture, Civil Engineering, Environment 15(2), 95–107. https://doi.org/10.2478/acee-2022-0018
  • 25. Matuska T., Zmrhal V., Shading Analysis of Façade Collectors in Urban Environment, materiały konferencyjne Eurosun2008- 1st International Congress on Heating, Cooling and Buildings, Lizbon 7-10 October 2008 (In: Proceedings-Sustainable Building, no. 089).
  • 26. Mirabi, E., Abarghuie, F.A., Arazi,R. (2021). Integration of buildings with third-generation photovoltaic solar cells: a review. Clean Energy, 5, issue 3, 505–526. https://doi.org/10.1093/ce/zkab031
  • 27. Muszyńska-Łanowy, M. (2011). Fotowoltaika w kolorze, Świat Szkła 4(11). https://www.swiat-szkla.pl/kontakt/4469-fotowoltaika-w-kolorze.html
  • 28. Orhon, A.V. (2016). A Review on Adaptive Photovoltaic Facades. Conference: Solar TR2016 International Solar Conference & Exhibition At: İstanbul.
  • 29. Pabasara Upalakshi Wijeratne W.M., Samarasinghe, T., Jing Yang, R., Wakefield, R. (2022). Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase. Applied Energy 309, 1, 118476. https://doi.org/10.1016/j.apenergy.2021.118476
  • 30. Parasuraman, D. (2023) A Review on Dye-Sensitized Solar Cells (DSSCs), Materials and Applications. Iranian Journal of Materials Science and Engineering 20(1), 1–23. DOI: 10.22068/ijmse.2994
  • 31. Park, N.G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65–72. https://doi.org/10.1016/j.mattod.2014.07.007
  • 32. Pastuszak, J., Węgierek, P. (2022). Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials 12,15(16): 5542. https://doi: 10.3390/ma15165542.
  • 33. Pelle, M., Causione, F., Maturi, L., Moser, D. (2023). Opaque Coloured Building Integrated Photovoltaic (BIPV): A Review of Models and Simulation Frameworks for Performance Optimisation. Energies 16(4), 1991. https://doi.org/10.3390/en16041991
  • 34. Pelle, M., Lucchi, E., Maturi, L., Astigarraga A., Causone F (2020). Coloured biPv Technologies: Methodological and Experimental Assessment for Architecturally Sensitive Areas. Energies 13(17), 4506. https://doi.org/10.3390/en13174506
  • 35. Photovoltaic Architecture Design Guide, Tokyo 2001.
  • 36. Pieter, J. (1970). Praca naukowa. Warszawa: PWN.
  • 37. Prasad, S.V.D., Krishnanaik, V., & Babu, K.R. (2013). Analysis of Organic Photovoltaic Cell. International Journal of Science and Modern Engineering, 1(9), 20–23. https://doi.org/10.1016/j.jestch.2020.08.006
  • 38. Reijenga, T.H. PV in Architecture No.22 (2011). In: A. Lucue, S. Hegedus, Handbook of Photovoltaic Science and Engineering, Willey ed., Chichester.
  • 39. Reijenga, T, Kaan, H. (2000). Roof and Facade Integration of PV Systems in a Laboratory Building. Renovation of the ECN Building 31 with PV, materiały z międzynarodowej konferencji Sustainable Building 2000 (In: Proceedings), Maastricht 22-25.10.2000.
  • 40. Roberts S., Guariento N. (2009). Building Integrated Photovoltaics. A Handbook. basel: birkhäuser.
  • 41. Romaní, J., Ramos, A., Salom, J. (2022). Review of Transparent and Semi-Transparent building-integrated Photovoltaics for Fenestration Application Modeling in building Simulations. Energies, 15, 3286. https://doi.org/10.3390/en15093286
  • 42. Rosa, F. (2020). Building-Integrated Photovoltaics (BIPV) in Historical buildings: Opportunities and Constraints. Energies, 13, 3628. https://doi.org/10.3390/en13143628
  • 43. Saif, O., Zekry A.H., Abouelatta, M., Shaker, A. (2023). A Comprehensive Review of Tandem Solar Cells integrated on Silicon Substrate: iii/v vs Perovskite, Silicon (Springer). https://doi.org/10.1007/s12633-023-02466-8
  • 44. Sarniak, M.T.(2008). Podstawy fotowoltaiki. Warszawa: OWPW.
  • 45. Shukla, A.K., Sudhakar, K., Baredar, P. (2017). Recent advancement in BIPV product technologies: A review. Energy and Buildings 140, 188-195. https://doi.org/10.1016/j.enbuild.2017.02.015
  • 46. Skandalos,N., Kapsalis, V., Karamanis, D. (2022a). The effect of local climatic conditions on the building integration of photovoltaics, iOP Conference Series: Earth and Environmental Science, 1123, 3rd International Conference on Environmental Design (ICED2022) 22/10/2022–23/10/2022 Athens, Greece. https://doi.org/10.1088/1755-1315/1123/1/012020
  • 47. Skandalos, N., Wang, M., Kapsalis, V., D’Agostino, D., Parker, D., Bhuvad, S.S., Udayraj, Peng, J., Karamanis, D. (2022b) Building PV integration according to regional climate conditions: biPv regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases. Renewable and Sustainable Energy Reviews. Volume 169, 112950. https://doi.org/10.1016/j.rser.2022.112950
  • 48. Strong, S. (2005) Building Integrated Photovoltaics (BIPV). Whole Building Design Guide, Solar Design Associates, 11.
  • 49. Tabakovic, M., Fechner, H., Knoebl, K. (2016). Development of innovative educational material for Building-integrated PV (Demi4BiPV). Framework and Requirements’ Analysis. The Dem4BIPV Consortium.
  • 50. Talvik, M., Ilomets, S., Klõšeiko, P., Kalamees, T., Põldaru, M., Heim, D.(2023). Hygrothermal Performance of Thick PCM Mortar behind PV Panels in Energy-Activated ETiCS Facades. buildings 13, 1572. https://doi.org/10.3390/buildings13061572
  • 51. Taşer, A., Koyunbaba, B.K., Kazanasmaz, T. (2023). Thermal, daylight, and energy potential of building-integrated photovoltaic (BIPV) systems: A comprehensive review of effects and developments. Solar Energy, 251, 171. https://doi.org/10.1016/j.solener.2022.12.039
  • 52. Tochigi, M., Tsukamoto, K. (2005). Itoman City Hall, materiały konferencyjne The 2005 World Sustainable Building Conference (SB05 Tokyo), Tokyo 27–29 September 2005 (In: Proceedings no. 01-080).
  • 53. Transparent solar panels. http://www.solar-constructions.com/wordpress/transparent-solar-panels/ (accessed 24.06.2023).
  • 54. Uddin, M., Jie J., Wang, Ch., Zhang, Ch., Ke, W. (2023). A review on photovoltaic combined vacuum glazing: Recent advancement and prospects. Energy and Buildings, 286, 1, 112939. https://doi.org/10.1016/j.enbuild.2023.112939
  • 55. Urbanetz, J., Zomer, C.D., Rüther, R. (2011). Compromises between form and function. Building and Environment 46(10), 2107–2113. https://doi.org/10.1016/j.buildenv.2011.04.024
  • 56. Xiang, Ch., Szybińska-Matusiak, B. (2022). Façade Integrated Photovoltaics design for high-rise buildings with balconies, balancing daylight, aesthetic and energy productivity performance. Journal of Building Engineering, 57, 104950. https://doi.org/10.1016/j.jobe.2022.104950
  • 57. Yang, R., Zang, Y., Yang, J., Wakefield, R., Nguyen, K., Shi, L., Trigunarsyah, B., Parolini, F., Bonomo, P., Frontini, F., Qi, D., Ko, Y., Deng, X. (2023). Fire safety requirements for building integrated photovoltaics (BIPV): A cross-country comparison. Renewable and Sustainable Energy Reviews, 173, 113112. https://doi.org/10.1016/j.rser.2022.113112
  • 58. Yin, Y., Chen, W., Hu, J., et al. (2020). Photothermal-structural-fluid behaviors of Pv-ETFE cushion roof in summer: Numerical analysis using three-dimensional multiphysics model. Energy Build, 228, 110448. https://doi.org/10.1016/j.enbuild.2020.110448
  • 59. Zhang, X., Lau S.S.Y, Lau S-K, Zhao, Y.(2018). Photovoltaic integrated shading devices (PVSDs): A review. August 2018. Solar Energy 170, 947-968. https://doi.org/10.1016/j.solener.2018.05.067
  • 60. Zielonko-Jung, K. (2013). Kształtowanie przestrzenne architektury ekologicznej w strukturze miasta. Warszawa: OWPW.
Uwagi
1. Section "Mechanics"
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-223f6a9f-726d-42f7-9c7c-33052eb68146
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.