PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ilościowa ocena i wydzielenie różnych form siarki w próbkach geologicznych wraz z zastosowaniem do badań pochodzenia związków siarki w systemach naftowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Quantitative assessment and isolation of various sulphur forms in geological samples and its application in investigation of sulphur compounds origin in petroleum systems
Języki publikacji
PL
Abstrakty
PL
Siarka występuje w naturze w bogactwie form – jako siarka elementarna, siarczki, siarczany, organiczne związki siarki (OZS, ang. organic sulfur compounds, OSC). W pracy zbadano zależności pomiędzy występowaniem siarki w ropach i skałach macierzystych. Wydzielono siarkę pirytową, pierwiastkową, organiczną w kerogenie oraz OZS w bituminach. Do rozdzielenia siarki pirytowej pozostałej po izolacji kerogenu zastosowano metodę redukcji kwaśnym roztworem chlorku chromu (II) (ang. chromium reducible sulfur method, CRS), przeprowadzaną w inertnej atmosferze azotu w komorze rękawicowej. Zastosowanie CrCl2 w obecności HCl powoduje wydzielenie siarki pirytowej w postaci H2S. Siarkowodór jest następnie wprowadzany do roztworu AgNO3, gdzie zachodzi reakcja z wytrąceniem się czarnego osadu Ag2S. Ilość wytrąconej siarki była oznaczana wagowo, a kerogen i siarczek srebra (I) były poddawane badaniom izotopów siarki. Analiza elementarna badanego materiału przed usunięciem i po usunięciu siarki pirytowej oraz obliczenie stosunków atomowych H/C, O/C, N/C, S/C potwierdziły przydatność metody wykazanej w poprzednich badaniach i nie uwidoczniły istotnych zmian w badanym kerogenie. W pracy oddzielono siarkę pirytową od organicznej w kerogenie z wybranych próbek warstw menilitowych z zewnętrznych Karpat fliszowych oraz poddano obie formy tego pierwiastka badaniom izotopowym, a także skorelowano z danymi dotyczącymi innych form występowania siarki w skałach, bituminach i ropach. Co istotne, znaczną część siarki całkowitej w kerogenie stanowi siarka pirytowa, co implikuje konieczność rozdzielenia jej od siarki organicznej w celu sformułowania poprawnych wniosków dotyczących energii aktywacji kerogenu i tempa generacji węglowodorów. Badania izotopowe potwierdzają wcześniejsze interpretacje pochodzenia pirytu z procesu bakteryjnej redukcji siarczanów i euksynicznego środowiska depozycji oligoceńskich osadów w basenie Paratetydy.
EN
Sulphur occurs in nature in a variety of forms: as elemental sulphur, sulphides, sulphates, and organic sulphur compounds (OSC). The work investigated the relationship between the presence of sulphur in crude oil and source rocks. Pyritic and organic sulphur was isolated in kerogen, while OSC and elemental sulphur was isolated in bitumens. The chromium reducible sulphur method (CRS) carried out in an inert nitrogen atmosphere in a glove box was used to separate pyritic sulphur remaining after kerogen isolation. The use of a CrCl2 solution in HCl results in the release of pyritic sulphur in the form of H2S. Hydrogen sulphide is later introduced into the AgNO3 solution, where reaction occurs resulting in precipitation of black Ag2S. The amount of precipitated sulphur was determined by weight, while kerogen remains and silver (I) sulphide underwent sulphur isotope testing. The elemental analysis of the tested material before and after the removal of pyritic sulphur and the calculation of the atomic H/C, O/C, N/C, S/C ratios confirmed the usefulness of the method demonstrated in previous studies and did not show any significant changes in the tested kerogen. In the work, pyritic sulphur was separated from organic sulphur in kerogen from selected samples of Menilite Beds from the Outer Carpathians and subjected to isotope tests, and correlated with data on other forms of sulphur occurrence in rocks, bitumens and crudes. A significant part of the total sulphur in kerogen is pyritic sulphur, which without determining the content of organic sulphur may lead to incorrect assumptions regarding the activation energy of kerogen and the rate of hydrocarbon generation. Isotopic studies confirm earlier interpretations of the origin of pyrite by bacterial reduction of sulphates and the euxinic environment of the deposition of Oligocene sediments in the Paratethys Basin.
Czasopismo
Rocznik
Strony
371--384
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
Bibliografia
  • Aboussou A., 2018. New Rock Eval method for Pyritic and Organic Sulphur quantification: Application to study Organic Matter preservation in Jurassic sediments. Earth Sciences. Sorbonne Université, PhD Thesis.
  • Acholla F.V., Orr W.L., 1993. Pyrite Removal from Kerogen without Altering Organic Matter: The Chromous Chloride Method. Energy & Fuels, 7(3): 406–410. DOI: 10.1021/ef00039a012.
  • Aizenshtat Z., Krein E.B., Vairavamurthy M.A., Goldstein T.P., 1995. Role of sulphur in the transformations of sedimentary organic matter: a mechanistic overview. ACS Symposium Series, 612: 16–37. DOI: 10.1021/bk-1995-0612.ch002.
  • Amrani A., 2014. Organosulphur Compounds: Molecular and Isotopic Evolution from Biota to Oil and Gas. Annual Review of Earth and Planetary Sciences, 42: 733–68. DOI: 10.1146/annurev-earth-050212-124126.
  • Amrani A., Aizenshtat Z., 2004. Mechanisms of sulfur introduction chemically controlled: d34S imprint. Organic Geochemistry, 35: 1319–1336.DOI: 10.1016/j.orggeochem.2004.06.019.
  • Amrani A., Lewan M.D., Aizenshtat Z., 2005. Stable sulphur isotope partitioning during simulated petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone, Israel. Geochimica et Cosmochimica Acta, 69: 5317–31. DOI: 10.1016/j.gca.2005.06.026.
  • Amrani A., Ma Q., Ahmad W.S., Aizenshtat Z., Tang Y., 2008. Sulfur isotope fractionation during incorporation of sulfur nucleophiles into organic compounds. Chemical Communications, 11: 1356–1358.DOI: 10.1039/B717113G.
  • Backlund K., Boman A., Frojdo S., Astrom M., 2005. An analytical procedure for determination of sulphur species and isotopes in boreal acid sulphate soils and sediments. Agricultural and Food Science, 14: 70–82. DOI: 10.2137/1459606054224147.
  • Baskin D.K., Peters K.E., 1992. Early generation characteristics of a sulphur-rich Monterey kerogen. AAPG Bulletin, 76: 1–13. DOI: 10.1306/BDFF874A-1718-11D7-8645000102C1865D.
  • Brüchert V., 2004. Physiological and ecological aspects of sulfur isotope fractionation during bacterial sulfate reduction. [W:] Amend J.P., Edwards K.J., Sulfur T.W. (eds.). Biogeochemistry – Past and Present. Geological Society of America, 379: 1–16. DOI: 10.1130/0-8137-2379-5.1.
  • Burton E.D., Sullivan L.A., Bush R.T., Johnston S.G., Keene A.F., 2008. A simple and inexpensive chromium-reducible sulphur method for acid-sulfate soils. Applied Geochemistry, 23: 2759–2766. DOI: 10.1016/j.apgeochem.2008.07.007.
  • Canfield D.E., Raiswell R., Westrich J.T., Reaves C.M., Berner R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54(1–2): 149–155. DOI: 10.1016/0009-2541(86)90078-1.
  • Carbonero F., Benefiel A.C., Alizadeh-Ghamsari A.H., Gaskins H.R., 2012. Microbial pathways in colonic sulfur metabolism and links with health and disease. Frontiers of Physiology, 3: 448. DOI: 10.3389/fphys.2012.00448.
  • Curtis J.B., Kotarba M.J., Lewan M.D., Więcław D., 2004. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: insights from hydrous pyrolysis experiments. Organic Geochemistry,35(11–12): 1573–1596. DOI: 10.1016/j.orggeochem.2004.06.018.
  • Firdaus G.A., 2015. Laboratory measurements of electrical resistivity of kerogen in organic – rich mudrocks. Texas A&M University. Master Thesis.
  • Habicht K.S., Canfield D.E., 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61: 5351–5361. DOI: 10.1016/S0016-7037(97)00311-6.
  • Habicht K.S., Gade M., Thamdrup B., Berg P., Canfield D.E., 2002. Calibration of sulfate levels in the Archean Ocean. Science, 298:2372–2374. DOI: 10.1126/science.1078265.
  • Hannan K., 1998. Sulfur isotopes in geochemistry. [W:] Marshall C.P., Fairbridge R.W. (eds.). Encyclopedia of Geochemistry. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Hartgers W.A., Lòpez J.F., Sinninghe Damsté J.S., Reiss C., Maxwell J.R., Grimalt J.O., 1997. Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds. Geochimica et Cosmochimica Acta, 61(22): 4769–4788. DOI: 10.1016/S0016-7037(97)00279-2.
  • Jørgensen B.B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochimica et Cosmochimica Acta, 43: 363–374. DOI: 10.1016/0016-7037(79)90201-1.
  • Jørgensen B.B., Böttcher M.E., Lüschen H., Neretin L.N., Volkov I.I., 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfi des in Black Sea sediments. Geochimica et Cosmochimica Acta, 68(9): 2095–2118. DOI: 10.1016/j.gca.2003.07.017.
  • Kallmeyer J., Ferdelman T.G., Weber A., Fossing H., Jørgensen B.B., 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography. Methods, 2(6): 171–180. DOI: 10.4319/lom.2004.2.171.
  • Kelemen S.R., Sansone M., Walters C.C., Kwiatek P.J., Bolin T., 2012. Thermal transformations of organic and inorganic sulphur in Type II kerogen quantified by S-XANES. Geochimica et Cosmochimica Acta, 83: 61–78. DOI: 10.1016/j.gca.2011.12.015.
  • Koopmans M.P., Carson F.C., Sinninghe Damsté J.S., Lewan D., 1998. Biomarker generation from type II-S kerogens in claystone and limestone during hydrous and anhydrous pyrolysis. Organic Geochemistry, 29:1395–402. DOI: 10.1016/S0146-6380(98)00187-9.
  • Koopmans M.P., de Leeuw J.W., Lewan M.D., Sinninghe Damsté J.S., 1996. Impact of dia- and catagenesis on sulphur and oxygen sequestration of biomarkers as revealed by artificial maturation of an immature sedimentary rock. Organic Geochemistry, 25: 391–426. DOI: 10.1016/S0146-6380(96)00144-1.
  • Kosakowski P., Więcław D., Kotarba M.J., 2009. Charakterystyka macierzystości wybranych utworów fliszowych w przygranicznej strefie polskich Karpat Zewnętrznych. Geologia, 35(4/1): 155–190.
  • Köster J., Rospondek M., Schouten S., Kotarba M., Zubrzycki A., Sinninghe Damsté J.S., 1998. Biomarker geochemistry of a foreland basin: The Oligocene Menilite Formation in the Flysch Carpathians of Southeast Poland. Organic Geochemistry, 29: 649–669. DOI: 10.1016/S0146-6380(98)00182-X.
  • Kotarba M.J., Koltun Y.V., 2006. The origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province. [W:] Golonka J., Picha F.J. (eds.). The Carpathians and their foreland: Geology and hydrocarbon resources. AAPG Memoir, 84: 395–442. DOI: 10.1306/985605M843074.
  • Lewan M.D., 1998. Sulphur-radical control on petroleum formation rates. Nature, 391:164–166. DOI: 10.1038/34391.
  • Lewan M.D., Kotarba M.J., Curtis J.B., Więcław D., Kosakowski P., 2006. Oil-generation kinetics for organic facies with Type-II and -IIS kerogen in the Menilite Shales of the Polish Carpathians. Geochimica et Cosmochimica Acta, 70: 3351–3368. DOI: 10.1016/j.gca.2006.04.024
  • Lovering E.G., Laidler K.I., 1960. A system of molecular thermochemistry for organic gases and liquids: Part II. Extension to compounds containing sulphur and oxygen. Canadian Journal of Chemistry, 38: 2367–2372. DOI: 10.1139/v60-321.
  • Lyons T.W., 1997. Sulfur isotopic trends and pathways of iron sulfide formation in upper holocene sediments of the anoxic black sea. Geochimica et Cosmochimica Acta, 61: 3367–3382. DOI: 10.1016/S0016-7037(97)00174-9.
  • Machel H.G., 1992. Low temperature and high temperature origins of elemental sulfur in diagenetic environments. [W:] Wessel G.R., Wimberly B.H. (eds.). Native Sulfur: Developments in Geology and Exploration. Society for Mining, Metallurgy and Exploration: 3–22.
  • Machel H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings: old and new insights. Sedimentary Geology,140(1–2): 143–175. DOI: 10.1016/S0037-0738(00)00176-7.
  • Matyasik I., Spunda K., Kania M., Wencel K., 2018. Genesis of hydrogen sulfide in carbonate reservoirs. Nafta-Gaz, 74(9): 627–635. DOI:10.18668/NG.2018.09.01.
  • Muller E., Ader M., Chaduteau C., Cartigny P., Baton F., Philippot P., 2017. The use of chromium reduction in the analysis of organic carbon and inorganic sulfur isotope compositions in Archean rocks. Chemical Geology, 457: 68–74. DOI: 10.1016/j.chemgeo.2017.03.014.
  • Ohmoto H., 1986. Stable isotope geochemistry of ore deposits. [W:] Valley J.W., Taylor H.P., O’Neil J.R. (eds.). Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy, 16: 491–559.
  • Ohmoto H., Kaiser C.J., Geer K.A., 1990. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted basemetal deposits. [W:] Herbert H.K., Ho E.H. (eds.). Stable Isotopes and Fluid Processes in Mineralization. University of Western Australia, Geology Department, 70–120.
  • Orr W.L., 1986. Kerogen/asphaltene/sulphur relationships in sulphur-rich Monterey oils. Organic Geochemistry, 10: 499–516. DOI: 10.1016/0146-6380(86)90049-5
  • Pearson M.J., Hill A.F.M., Fallick A.E., Cuvillon S., 1996. Sulphur incorporation in Jurassic marine mudrocks and their bitumens at low thermal maturity, Cleveland Basin, England. Geochimica et Cosmochimica Acta, 60: 4181–4192. DOI: 10.1016/S0016-7037(96)00234-7.
  • Robl T.L., Taulbee D.N., 1995. Demineralization and Kerogen Maceral Separation and Chemistry. Composition, Geochemistry and Conversion of Oil Shales, 455: 35–50. DOI: 10.1007/978-94-011-0317-6_3.
  • Rosenberg Y.O., Meshoulam A., Said-Ahmad W., Shawar L., Dror G., Reznik I.J., Feinstein S., Amrani A., 2017. Study of thermal maturation processes of sulfur-rich source rock using compound specific sulfur isotope analysis. Organic Geochemistry, 112: 59–74. DOI: 10.1016/j.orggeochem.2017.06.005.
  • Siedenberg K., Strauss H., Podlaha O., van den Boorn S., 2018. Multiple sulfur isotopes (δ34S, ∆33S) of organic sulfur and pyrite from Late Cretaceous to Early Eocene oil shales in Jordan. Organic Geochemistry, 125: 29–40. DOI: 10.1016/j.orggeochem.2018.08.002.
  • Sim M.S., Bosak T., Ono S., 2011. Large sulfur isotope fractionation does not require disproportionation. Science, 333: 74–77. DOI: 10.1126/science.120510.
  • Sinninghe Damsté J.S., de Leeuw J.W., 1990. Analysis, structure and geochemical significance of organically bound sulphur in the geosphere: state of the art and future research. Organic Geochemistry, 16: 1077–101. DOI: 10.1016/0146-6380(90)90145-P.
  • Sinninghe Damsté J.S., Rijpstra W.I.C., Kock-Van Dalen A.C., De Leeuw J.W., Schenck P.A., 1989. Quenching of labile functionalised lipids by inorganic species: Evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis. Geochimica et Cosmochimica Acta, 53: 1343–1355. DOI: 10.1016/0016-7037(89)90067-7.
  • Sullivan L.A., Bush R.T., McConchie D., 2000. A modified chromium-reducible sulphur method for reduced inorganic sulphur: optimum reaction time for acid sulfate soil. Australian Journal of Soil Research, 38: 729–34. DOI: 10.1071/SR99088.
  • Sullivan L.A., Bush R.T., McConchie D., Lancaster G., Haskins P.G., Clark M.W., 1999. Comparison of peroxide-oxidisable sulphur and chromium-reducible sulphur methods for determination of reduced inorganic sulphur in soil. Australian Journal of Soil Research, 37: 255–265. DOI: 10.1071/S98074.
  • Tannenbaum E., Aizenshtat Z., 1985. Formation of immature asphalt from organic-rich carbonate rocks. I. Geochemical correlation. Organic Geochemistry, 8: 181–92. DOI: 10.1016/0146-6380(85)90037-3.
  • Tissot B.P., Welte D.H, 1984. Petroleum Formation and Occurrence. 2nd Edition. Springer-Verlag, Berlin.
  • Tuttle M.L., Goldhaber M.B., Williamson D.L., 1986. An analytical scheme for determining forms of sulphur in oil shales and associated rocks. Talanta, 33(12): 953–961. DOI: 10.1016/0039-9140(86)80234-x.
  • Waldo G.S., Carison R.M.K., Moldowan J.M., Peters K.E., Penner-Hahn J.E., 1991. Sulfur speciation in heavy petroleums: Information from
  • X-ray absorption near-edge structure. Geochimica et Cosmochimica Acta, 55: 801–814. DOI: 10.1016/0016-7037(91)90343-4.
  • Wencel K., 2022. Siarka organiczna i pirytowa: metody wydzielania i oceny ilościowej. Wpływ zawartości siarki organicznej na energię aktywacji kerogenu. Nafta-Gaz, 78(2): 97–109. DOI: 10.18668/NG.2022.02.02.
  • Wendorff-Belon M., Rospondek M., Marynowski L., 2021. Early Oligocene environment of the Central Paratethys revealed by biomarkers and pyrite framboids from the Tarcău and Vrancea Nappes (Eastern Outer Carpathians, Romania). Marine and Petroleum Geology, 128:105037. DOI: 10.1016/j.marpetgeo.2021.105037.
  • Werne J.P., Lyons T.W., Hollander D.J., Schouten S., Hopmans E.C., Sinninghe Damsté J.S., 2008. Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochimica et Cosmochimica Acta, 72: 3489–3502. DOI:10.1016/j.gca.2008.04.033.
  • Więcław D., 2002. Geneza oligoceńskiej ropy naftowej polskich Karpat fliszowych – siarka organiczna w kerogenie warstw menilitowych a kinetyka procesu generowania węglowodorów. Niepublikowana praca doktorska. Akademia Górniczo-Hutnicza im. St. Staszica. Kraków.
  • Wilkin R.T., Bischoff K.J., 2006. Coulometric determination of total sulfur and reduced inorganic sulfur fractions in environmental samples. Talanta, 70: 766–773. DOI: 10.1016/j.talanta.2006.01.034.
  • Wójcik-Tabol P., Wendorff-Belon M., Kosakowski P., Zakrzewski A., Marynowski L., 2022. Paleoenvironment, organic matter maturity and the hydrocarbon potential of Menilite shales (Silesian Unit, Polish Outer Carpathians) – Organic and inorganic geochemical proxies. Marine and Petroleum Geology, 142: 105767. DOI: 10.1016/j.marpetgeo.2022.105767.
  • Zerkle A.L., Farquhar J., Johnston D.T., Cox R.P., Canfield D.E., 2009. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochimica et Cosmochimica Acta, 73: 291–306. DOI: 10.1016/j.gca.2008.10.027.
  • Zhabina N.N., Volkov I.I., 1978. A method of determination of various sulphur compounds in sea sediments and rocks. [W:] Krumbein W.E. (ed.). Environmental Biogeochemistry, vol. 3. Ann Arbor Science Publishers, Michigan, 735–745.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-223ad537-bd1a-487d-8cf7-aacee0233838
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.