PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New crane bumper design with an energy absorption device system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents research carried out using physical data from the experimental construction of an overhead crane. This article aims to determine the dynamic behaviour of the cart-pendulum system when the hoisting mechanism hits the new bumper design at the end of the girder support structure with selected speed and bumper material to the length of the wire rope. This research shows the influence of the horizontal speed of the hoisting mechanism on the bumper force during a collision with a standard buffer and its modifications. The presented model can be the basis for modelling more complex cases, and its assumed role (i.e. the ability to determine the angle of deflection of the rope during an impact) has been confirmed and is possible to use in a specific case of an overhead crane on an industrial scale. Preliminary analysis of the construction of the bumper considered reveals its positive features, aiming, among other goals, to reduce the acceleration and force acting on the crane cart in emergency situations.
Słowa kluczowe
Czasopismo
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering; Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Gąska, D. Model research of load – carrying crane structures and hoist load dynamics in the context of regular and chaotic vibrations. Wydawnictwo Politechniki Śląskiej. Gliwice, 2019.
  • 2. Haniszewski, T. Metodyka modelowania mechanizmów wykonawczych suwnic. Wydawnictwo Politechniki Śląskiej. Gliwice 2021.
  • 3. EN 13001-2:2020. Crane safety - General design - Part 2: Load actions.
  • 4. Haniszewski, T. Modeling the dynamics of cargo lifting process by overhead crane for dynamic overload factor estimation. J. Vibroeng. 2017. Vol. 19. No. 1. P. 75-86.
  • 5. Stańco, M., & Działak, P. & Żędzianowski, B. Numerical and experimental analysis of the rubber bumper stiffness. Materials Today: Proceedings. 2019. Vol. 12. P. 508-513.
  • 6. Haniszewski, T. Preliminary modeling studies of sudden release of a part of the hoist load with using experimental miniature test crane. In: Vibroengineering Procedia. 2017. Vol. 13.
  • 7. Beller, S. & Yavuz, H. Crane automation and mechanical damping methods. Alexandria Engineering Journal. 2021. Vol. 60. P. 3275-3293.
  • 8. Aguiar, C. & Leite, D. & Pereira, D. & Andonovski, G. & Škrjanc, I. Nonlinear modeling and robust LMI fuzzy control of overhead crane systems. Journal of the Franklin Institute. 2021. Vol. 358. P. 1376-1402.
  • 9. Lee, J. & Mukherjee, R. & Khalil, H.K. Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties. Automatica. 2015. Vol. 54. P. 146-157.
  • 10. Maghsoudi, M. & Mohamed, A. & Sudin, S. & Buyamin, S. & Jaafar, H.I. & Ahmad S.M. An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mechanical Systems and Signal Processing. 2017. Vol. 92. P. 364-378.
  • 11. Wu, Q. & Wang, X. & Hua, L. & Xia, M. Dynamic analysis and time optimal anti-swing control of double pendulum bridge crane with distributed mass beams. Mechanical Systems and Signal Processing. 2020. Vol. 144. No. 106968.
  • 12. Mathew, N.J. & Rao, K.K. & Sivakumaran, N. Swing up and stabilization control of a rotary inverted pendulum. 2013. In: IFAC Proceedings Volumes (IFAC-PapersOnline). 2013. Vol. 10. IFAC.
  • 13. Anderle, M. & Appeltans, P. & Celikovskýet, S. & et al. Controlling the variable length pendulum: Analysis and Lyapunov based design methods. Journal of the Franklin Institute. 2022. Vol. 359. No. 3. P. 1382-1406.
  • 14. Miranda-Colorado, R. & Aguilar, L. A family of anti-swing motion controllers for 2D-cranes with load hoisting/lowering. Mechanical Systems and Signal Processing. 2019. Vol. 133. No. 106253.
  • 15. Hrabovský, L. & Cepica, D. & Frydrýšek, K. Detection of mechanical stress in the steel structure of a bridge crane. Theoretical and Applied Mechanics Letters. 2021. DOI: https://doi.org/10.1016/j.taml.2021.100299.
  • 16. Shumei, M. & Ran, T. & Liyun, X. & Liangsheng, Y. Delivery operation time optimization of multicrane scheduling in steel plate yard. In: Procedia CIRP. 2021. Vol. 104. P. 1077-1082.
  • 17. Huang, C. & Li, W. & Lu, W. & Xue, F. & Liu, M. & Liu, Z. Optimization of multiple-crane service schedules in overlapping areas through consideration of transportation efficiency and operational safety. Automation in Construction. 2021. Vol. 127. No. 103716.
  • 18. Hu, S. & Fang, Y. & Guo, H. A practicality and safety-oriented approach for path planning in crane lifts. Automation in Construction. 2021. Vol. 127. No. 103695.
  • 19. Price, L. & Chen, J. & Park, J. & Cho, Y. Multisensor-driven real-time crane monitoring system for blind lift operations: Lessons learned from a case study. Automation in Construction. 2021. Vol. 124. No. 103552.
  • 20. Eberharter, J. & Rajek, M. Dynamic Anti-Collision System for Hydraulic Cranes. In: Proceedings of the 18th World Congress. The International Federation of Automatic Control. Milano (Italy) August 28 - September 2, 2011.
  • 21. Hwang, S. Ultra-wide band technology experiments for real-time prevention of tower crane collisions. Automation in Construction. 2012. Vol. 22. P. 545-553.
  • 22. Margielewicz, J. & Haniszewski, T. & Gąska, D. & Pypno C. Badania modelowe mechanizmów podnoszenia suwnic. Katowice: Polish Academy of Science. 2013. 204 p. [In Polish: Model studies of cranes hoisting mechanisms].
  • 23. Matyja, T. Safety of transport operations performed using pallet load units. Scientific Journal of Silesian University of Technology. Series Transport. 2021. Vol. 112. P. 145-156.
  • 24. Autodesk Inventor – Software Help Files. Available at: https://knowledge.autodesk.com; https://www.autodesk.com/2018.06.04.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2237b448-39ee-4b1b-9617-61ce7bb12c75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.